

LEVEL DENSITIES IN THE ACTINIDE REGION AND INDIRECT CROSS SECTION MEASUREMENTS USING THE SURROGATE METHOD

J.N. Wilson, IPN Orsay

Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 11

91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr

OSLO CYCLOTRON LAB EXPERIMENTS

THE SURROGATE METHOD

$$\sigma_{n,\gamma}(E_n) = \sigma_{CN}(E_n) \times P_{n,\gamma}(E_n)$$

$$\uparrow \qquad \uparrow$$
OMP calculation Measuremen

SURROGATE METHOD FOR (N, FISSION) X-SECTIONS

4

SURROGATE (N,GAMMA) X-SECTION IN 233PA

 $(t_{1/2} = 27 \text{ d})$ $\xrightarrow{232}\text{Th} \xrightarrow{233}\text{Th} \xrightarrow{233}\text{Pa} \xrightarrow{233}\text{U}$ $(n, \gamma) \qquad \beta^{-} \qquad \beta^{-}$

S. Boyer et al. Nucl. Phys. A775, 175 (2006)

SURROGATE (N,GAMMA) IN GADOLINIUM NUCLEI

N.D. Scielzo et al.

PHYSICAL REVIEW C 81, 034608 (2010)

Large discrepencies between direct and surrogate methods at low energy

« To extract reliable x-sections, a more sophisticated analysis should be developed that takes into account angular momentum differences between the neutron induced and surrogate reactions. »

THE WEIGHTING FUNCTION TECHNIQUE

Efficiency of detecting a cascade, *Ec* of *m* gammas is:

$$\mathcal{E}_{c} = 1 - \prod_{j=1..m} (1 - \mathcal{E}_{j})$$

If
$$\varepsilon$$
 is small then: $\varepsilon_c \approx \sum_{j=1..m} \varepsilon_j$

Suppose detector has this property: $\varepsilon = k E_{v}$

Then effeciency of detecting a cascade becomes proportional to cascade energy and independent of cascade path!!

$$\sum_{d} W(E_d) R(E_d, E_{\gamma}) = k E_{\gamma}$$

SIMULATED CACTUS RESPONSE WITH MCNP5

EXTRAPOLATION BELOW THRESHOLD

CASCADE COUNTING IN 233TH*

RESULTS(1) : MEASURED DECAY PROBABILITIES

 σ_{CN} is calculated from TALYS OMP, where input parameters are chosen to minimize the difference between measured and calculated total x-sections

SURROGATE 232TH(N,GAMMA) X-SECTION

SURROGATE 232TH(N,GAMMA) X-SECTION

4.47 × 10⁹

SURROGATE 230TH(N,GAMMA) X-SECTION

18

231PA(N,GAMMA) X-SECTION

SURROGATE 231PA(N,GAMMA) X-SECTION

LEVEL DENSITY MODEL IMPORTANT FOR X-SECTIONS

OSLO METHOD

1) Sort the raw data to obtain the set of gamma spectra $F(E_i)$

2) Unfold the response of 3) Obtain the set of the gamma detector to primary gamma spectra U(Ei) $P(E_i, E_y)$ iteratively be

3) Obtain the set of primary gamma spectra $P(E_i, E_{\gamma})$ iteratively by subtracting contributions from higher generations

4)
$$P(E_i, E_{\gamma}) \propto \rho(E_f) \cdot T(E_{\gamma})$$

Find $\rho(E_f)$ and $T(E_v)$ iteratively

Excitation energy E (MeV)

NEW METHOD FOR EXTRACTING NLD AND GSF

1) Trial NLD + GSF Functions

2) Monte-Carlo Cascade Generator (Known states below 1 MeV + D₀ value at S_n)

3) Fold with the Detector Response

4) Simulated set of $F(E_i)$ spectra

X² minimization (40-80 free parameters)

5) Compare Expt. Data and Simulated Data. Compute X²

One X² evaluation 10⁷ cascades takes ~ 1 min. = one week of computer time to perform 10000 X² evaluations ²⁵

THE FUTURE

Experiments 2011-2012: ²³³U(d,p), ²³⁵U(p,d) and ²³⁸U

Inverse Kinematics

Fission detectors

Minimisation with the Downhill simplex method

 $\sum_{d} W(E_{\gamma}) R(E_{d}, E_{\gamma}) - k E_{\gamma} = 0$

« With four parameters, I could fit an elephant, with five I could make him wiggle his trunk »

$$W(E) = a + bE + cE^2 + dE^3 + eE^4 + fE^5$$

