Collectivities in many-body ensembles with random interactions.

Alexander Volya

Florida State University

Mesoscopic system

The simple model

- Single-j level
- Ω =2j+1 single-particle orbitals: m=-j, j-1, ... j
- •Number of nucleons N: $0 \le N \le \Omega$
- •Number of many-body states: $\Omega!/((N!(\Omega-N)!)$
- Many-body states classified by rotational symmetry: (J,M)

Dynamics

- •Rotational invariance and two-body interactions particle-particle pair operator $P_{LM}=(a\ a)_{LM}$ particle-hole pair operator $M_{K\kappa}=(a\ a^{\dagger})_{K\kappa}$
- •Hamiltonian $H = \sum_L V_L \sum_M P_{LM}^\dagger P_{LM}$
- Dynamics is fully determined by j+1/2 parameters V_L

Ground state statistics^[1]

Dynamics versus symmetry

Take V_I at random

(Gaussian distribution centered at 0, width 1)

What is the probability for the ground state to have spin J?

- J=0 is enhanced
- J=J_{max} is enhanced

[1] C. W. Johnson, G. F. Bertsch, and D. J. Dean, Phys. Rev. Lett. 80, 2749 (1998).

Observables

Reduced transition probability
$$B(E2,J_i \to J_f) = \sum_{\mu,M_f} |\langle J_f M_f | \mathcal{M}_{2\mu} | J_i M_i \rangle|^2$$

Total transition strength

$$S(J_i) = \sum_{J_f} B(E2, J_i \to J_f)$$

Fractional collectivity
$$b(E2, J_i \rightarrow J_f) = B(E2, J_i \rightarrow J_f)/S(J),$$

Quadrupole moment Q $Q(J) = \langle JJ | \mathcal{M}_{20} | JJ \rangle$

$$Q(J) = \langle JJ | \mathcal{M}_{20} | JJ \rangle$$

Normalized body-fixed moment

$$q_{\lambda}(J) = rac{Q_{\lambda}(J)}{\sqrt{S_{\lambda}(0_{gs})}} \quad \mathcal{Q}(2_{1}) = -2/7 \, Q(2_{1})$$

Ratio of de-excitation rates
$$B_{42}=rac{B(E2,4_1
ightarrow 2_1)}{B(E2,2_1
ightarrow 0_{gs})}$$

Ratio of excitation energies

$$R_{42} = \frac{E(4_1)}{E(2_1)}$$

Collective modes

Rotations

------ 4

Vibrations

0, 2, 4

Pairing

- 2, ...

b=1

$$q = +1$$
 (prolate)

$$q = -1$$
 (oblate)

$$R_{42} = 10/3 \approx 3.33$$

$$B_{42} = 10/7 \approx 1.41$$

2.2

2

$$b = 1$$

$$q = 0$$

$$R_{42}=2$$

$$B_{42} = 2$$

$$b=1$$

$$q \approx 0$$

$$R_{42} = 1$$

$$B_{42} \approx 0$$

Collectivity in TBRE (19/2)⁶

- Large fraction of realizations with 0_{g s}, 2₁ (10%)
- ullet Collectivity in E2 transition $b \approx 1$
- For *collective* (b>0.7) realizations the quadrupole moment is close to that of a symmetric top (|q|~1).
- ◆ Both prolate (q>0.7) and oblate (q<-0.7) shapes are observed.</p>

Rotations -> Deformed mean filed

Collectivity in TBRE (19/2)⁶

- ◆ The distribution of B₄₂ has a peak at the rotational value for the oblate realizations.
- R₄₂ deviates from rotational

Size of deformation

Intrinsic moment and total transition strength

$$S(0_{qs}) = Q^2 \sim \beta^2$$

Sum rule for the transition strength

$$S = \sum_{i} B(E2, 0_{g.s.} \to 2_{i}) = \langle 0_{gs} \left[\sum_{\mu} \mathcal{M}_{2\mu}^{\dagger} \mathcal{M}_{2\mu} \right] 0_{gs} \rangle$$

Use Quadrupole-Quadrupole (QQ) Hamiltonian $\,H_{ m QQ} = -\sum_{\mu} {\cal M}_{2\mu}^\dagger {\cal M}_{2\mu}^{}$

·Eigenvalue coincides with S

•Ground state has largest possible S
$$s(J) = \frac{S(J)}{|E_{\mathrm{QQ}}(0_{gs})|},$$

•For SU(3), S is Casimir operator, identifies representation

Distribution of s

- · Prolate shape, less likely, small deformation s=0.35.
- Oblate shape, most likely, high deformation, s=1, state is nearly that of QQ

Triaxial rotor Hamiltonian

Collective Rotor Hamiltonian $H_{rot} = \sum A_i I_i^2$

$$H_{rot} = \sum_{i=123} A_i I_i^2$$

Three parameters A_1, A_2, A_3

Spectral
$$E(2_1)+E(2_2)=E(3_1)$$
 QQ-Hamiltonian is relations $4E(2_1)+E(2_2)=E(5_1)$ triaxial rotor (19/2)⁶

$$E(2_1) + E(2_2) = 1.005E(3_1)$$
$$4E(2_1) + E(2_2) = 1.026E(5_1)$$

Triaxiality Parameters

 H_{rot} parameters A_1, A_2, A_3 instead we use:

- 1.) Overall energy scale
- 3.) Energy ratio of E(2₁) and E(2₂) $\gamma_{\rm DF}^2 \approx \frac{E(2_1)}{2E(2_2)}$ Shape parameters: β γ define $\frac{1}{2}$

Relationship between H_{rot} and $\beta \gamma$ is model-dependent. For irrotational flow model $\gamma_{DF} = \gamma \Gamma \ll \gamma$

how to measure?

$$\tan^{2}(\gamma - \Gamma) = \frac{B(E2, 0 \to 2_{2})}{B(E2, 0 \to 2_{1})} \quad \tan^{2}(\gamma + 2\Gamma) = \frac{2B(E2, 2_{1} \to 2_{2})}{7Q^{2}(2_{1})}$$

See also: J. M. Allmond, et.al. Phys. Rev. C 78, 014302 (2008).

Distribution of triaxiality parameters

(19/2)⁶ model

- · Prolate realization are axially symmetric.
- . Oblate realizations are triaxial. The values of the triaxiality parameters are consistent with those of the QQ Hamiltonian $\gamma=9.79~\Gamma=0.73$
- Energy ratios are too sensitive to non-collective features.

Collectivity in other models

Collectivity in higher multipole moments

Collectivities are seen for higher multipolairities.

Realistic Model space $(f_{7/2}, p_{3/2})^8$

Probability 9

2

0.2

0.4

S

8.0

- •Similar to other models
- Prolate shape
- •Rotational energy spacing in R₄₂

Role of QQ component (19/2)8

$$H = \sum_{L} V_{L} \sum_{\Lambda} P_{L\Lambda}^{\dagger} P_{L\Lambda} = \epsilon N - \sum_{\mathcal{K}} \tilde{V}_{\mathcal{K}} \sum_{k} M_{\mathcal{K}k}^{\dagger} \mathcal{M}_{\mathcal{K}k}$$

- The *K*=0 term is proportional to the number of particles.
- The dipole term, *K*=1, is related to the components of J.
- *K*=2 is a quadrupole term.

What happens if quadrupole componet is removed?

- (a) two-body random ensemble
- (b) J² is excluded
- (c) J² and QQ are excluded

QQ interaction component is necessary for quadrupole collectivity in transition

Role of QQ component $(f_{7/2}, p_{3/2})^8$

How big is the QQ component in the wave function?

Overlap between TBRE and QQ wave functions: $x = |\langle 0_{gs}(\text{TBRE})|0_{gs}(\text{QQ})\rangle|^2$

The states in TBRE exhibit QQ structure.

Characteristics of the QQ interaction

	b	q	B_{42}	R_{42}	$\gamma(\deg)$	$\Gamma(\deg)$	$\gamma_{ m DF}({ m deg})$
$(19/2)^6$						0.43	7.5
$(0f_{7/2}, 1p_{3/2})^8$	0.97	0.996	1.35	3.27	4.7	-0.03	13.1

• Spectral characteristics of the dominant collective mode in the TBRE are consistent with those of the QQ Hamiltonian.

Remarks on prolate dominance

- •States of the QQ-Hamiltonian determine shape
- •QQ-Hamiltonian is defined by the model space
- Particle-hole symmetry
- Model predictions

Figure: $H=H_{HO.}+H_{su(3)}$ perturbative approach. $h\omega=41/A^{1/3}$ $\kappa=14/A^{5/3}$

40

20

Example: 8 nucleons on sd shell

configuration	irrep	Energy	shape
$(p)^2(sd)^4$	(0,6)	216	oblate
(sd) ⁸	(2,4)	184	oblate
$(sd)^4(pf)^2$	(12,0)	720	prolate

n-body Random Ensemble (n-BRE)

$$\begin{array}{ll} \text{n-body} \\ \text{Hamiltonian} \end{array} \qquad H^{(n)} = \sum_{\alpha\beta} \sum_L V_L^{(n)}(\alpha\beta) \sum_{M=-L}^L T_{LM}^{(n)^\dagger}(\alpha) \, T_{LM}^{(n)}(\beta) \\ \\ \text{Operator} \qquad T_{LM}^{(n)^\dagger}(\alpha) \, = \sum_{12...n} C_{12...n}^{LM}(\alpha) \, a_1^\dagger a_2^\dagger \ldots a_n^\dagger \end{array}$$

n-body operator is eigenstate $T_{LM}^{(n)^\dagger}(\alpha)|0\rangle$ of the reference 2-body Hamiltonian $H_0^{(2)}$

Random Gaussian ensemble of interactions

$$\langle V_L^{(n)}(\alpha,\beta) \rangle = 0 \qquad V_L^{(n)}(\alpha,\beta) = V_L^{(n)}(\beta,\alpha)$$
$$\langle V_L^{(n)}(\alpha,\beta) V_{L'}^{(n)}(\alpha',\beta') \rangle = \delta_{LL'}\delta_{\alpha\alpha'}\delta_{\beta\beta'}(1+\delta_{\alpha\beta})/2$$

The ensemble does not depend on the choice of reference Hamiltonian For n = N the ensemble is GOE in each symmetry class

Statistics of g.s. spins

Low-lying quadrupole collectivity and 3-body force

(19/2)⁶ model

Figure: Fractional collectivity of the E2 between 0⁺ g.s. and 2⁺ j=19/2 system with 6 particles

Phonon-phonon interaction

Distribution of spectroscopic factors

Figure: Distribution of the spectroscopic factors for decay of g.s. in N-particle system to final N-1 0⁺ g.s. j=19/2

Single j=19/2 level

|I
angle -parent ground state 19/2+

|F
angle -daughter ground state 0+ $|c
angle = \left\{a^\dagger |F
angle
ight\}$

 γ_0 -ground state to ground state reduced transition width

The spectroscopic factor of low-lying states is large

Conclusions

- •Collective rotational features are common in TBRE (10%)
- Surprising coherent role of QQ-component
- •Deformation type, triaxiality are consistent with those of QQ Hamiltonian
- Prolate versus oblate
- Many-body forces are destructive for collectivities and eventually lead to GOE

Acknowledgements:

Thanks: V. Abramkina, V. Zelevinsky

Funding support: Department of Energy grant DE-FG02-92ER40750.

Computing: Florida State University shared High-Performance

Computing facility.

Further reading:

V. Abramkina and A. Volya, arXiv:1105.1669v1 [nucl-th]