Enhanced dipole strength and its consequences for reaction rates

Ronald Schwengner

Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf 01314 Dresden, Germany

- Photon-scattering experiments
- Data analysis and results
- Model predictions for dipole strength
- Calculations of reaction rates using statistical models
- Photoactivation experiments

HZDR

Supported by Deutsche Forschungsgemeinschaft

Mitglied der Helmholtz-Gemeinschaft

- Modelling of astrophysical processes:
 - (γ, n) reaction rates in the p-process.
 - $-(n,\gamma)$ reaction rates in the s-process.
- Studies for future nuclear-fuel cycles:
 - Improved experimental and theoretical description of (n, γ) reactions.
- Open problems:
 - Differences between analytic approximations for dipole strength functions.
 - Discrepancies between strength functions deduced from experiments using different reactions.
 - Influence of nuclear deformation etc. on strength functions.

- Modelling of astrophysical processes:
 - (γ, n) reaction rates in the p-process.
 - $-(n,\gamma)$ reaction rates in the s-process.
- Studies for future nuclear-fuel cycles:
 - Improved experimental and theoretical description of (n, γ) reactions.
- Open problems:
 - Differences between analytic approximations for dipole strength functions.
 - Discrepancies between strength functions deduced from experiments using different reactions.
 - Influence of nuclear deformation etc. on strength functions.

- Modelling of astrophysical processes:
 - $-(\gamma, n)$ reaction rates in the p-process.
 - $-(n,\gamma)$ reaction rates in the s-process.
- Studies for future nuclear-fuel cycles:
 - Improved experimental and theoretical description of (n, γ) reactions.
- Open problems:
 - Differences between analytic approximations for dipole strength functions.
 - Discrepancies between strength functions deduced from experiments using different reactions.
 - Influence of nuclear deformation etc. on strength functions.

- Modelling of astrophysical processes:
 - (γ, n) reaction rates in the p-process.
 - $-(n,\gamma)$ reaction rates in the s-process.
- Studies for future nuclear-fuel cycles:
 - Improved experimental and theoretical description of (n, γ) reactions.
- Open problems:
 - Differences between analytic approximations for dipole strength functions.
 - Discrepancies between strength functions deduced from experiments using different reactions.
 - Influence of nuclear deformation etc. on strength functions.

- Modelling of astrophysical processes:
 - (γ, n) reaction rates in the p-process.
 - $-(n,\gamma)$ reaction rates in the s-process.
- Studies for future nuclear-fuel cycles:
 - Improved experimental and theoretical description of (n, γ) reactions.
- Open problems:
 - Differences between analytic approximations for dipole strength functions.
 - Discrepancies between strength functions deduced from experiments using different reactions.
 - Influence of nuclear deformation etc. on strength functions.

- Modelling of astrophysical processes:
 - (γ, n) reaction rates in the p-process.
 - $-(n,\gamma)$ reaction rates in the s-process.
- Studies for future nuclear-fuel cycles:
 - Improved experimental and theoretical description of (n,γ) reactions.
- Open problems:
 - Differences between analytic approximations for dipole strength functions.
 - Discrepancies between strength functions deduced from experiments using different reactions.
 - Influence of nuclear deformation etc. on strength functions.

- Modelling of astrophysical processes:
 - (γ, n) reaction rates in the p-process.
 - $-(n,\gamma)$ reaction rates in the s-process.
- Studies for future nuclear-fuel cycles:
 - Improved experimental and theoretical description of (n,γ) reactions.
- Open problems:
 - Differences between analytic approximations for dipole strength functions.
 - Discrepancies between strength functions deduced from experiments using different reactions.
 - Influence of nuclear deformation etc. on strength functions.

- Modelling of astrophysical processes:
 - (γ, n) reaction rates in the p-process.
 - $-(n,\gamma)$ reaction rates in the s-process.
- Studies for future nuclear-fuel cycles:
 - Improved experimental and theoretical description of (n,γ) reactions.
- Open problems:
 - Differences between analytic approximations for dipole strength functions.
 - Discrepancies between strength functions deduced from experiments using different reactions.
 - Influence of nuclear deformation etc. on strength functions.

The radiation source ELBE

Electron Linear accelerator of high Brilliance and low Emittance

Mitglied der Helmholtz-Gemeinschaft

National center for high-power radiation sources at ELBE/HZDR

- S X-ray source using Laser-Compton-backscattering
- S Petawatt laser for ion acceleration

R

The bremsstrahlung facility at the electron accelerator ELBE

HZDR

Mitglied der Helmholtz-Gemeinschaft

Detector setup

Mitglied der Helmholtz-Gemeinschaft Ronald Schwengner | Institut für Strahlenphysik | http://www.hzdr.de

Problem of feeding and branching

Measured intensity of a γ transition:

$$I_{\gamma}(E_{\gamma}, \Theta) = I_{s}(E_{x}) \, \Phi_{\gamma}(E_{x}) \, \epsilon(E_{\gamma}) \, N_{at} \, W(\Theta) \, \Delta \Omega$$

Integrated scattering cross section:

$$I_{\rm s} = \int \sigma_{\gamma\gamma} \, dE = \frac{2J_{\rm x} + 1}{2J_0 + 1} \, \left(\frac{\pi\hbar c}{E_{\rm x}}\right)^2 \frac{\Gamma_0}{\Gamma} \, \Gamma_0$$

Absorption cross section:

$$\sigma_{\gamma} = \sigma_{\gamma\gamma} \, \left(\frac{\Gamma_0}{\Gamma}\right)^{-1}$$

E1 strength:

$$B(E1) \sim \Gamma_0 / E_{\gamma}^3$$

Ronald Schwengner | Institut für Strahlenphysik | http://www.hzdr.de

Mitglied der Helmholtz-Gemeinschaft

 E_{e} E_{x}, Γ branching Γ_{1} Γ_{0} 0

Problem of feeding and branching

Measured intensity of a γ transition: $I_{\gamma}(E_{\gamma}, \Theta) > I_{s}(E_{x}) \Phi_{\gamma}(E_{x}) \epsilon(E_{\gamma}) N_{at} W(\Theta) \Delta \Omega$

Integrated scattering cross section:

$$I_{\rm s} = \int \sigma_{\gamma\gamma} \ dE = \frac{2J_{\rm x} + 1}{2J_0 + 1} \ \left(\frac{\pi\hbar c}{E_{\rm x}}\right)^2 \frac{\Gamma_0}{\Gamma} \ \Gamma_0$$

Absorption cross section:

$$\sigma_{\gamma} = \sigma_{\gamma\gamma} \left(\frac{\Gamma_0}{\Gamma}\right)^{-1}$$

E1 strength:

$$B(E1) \sim \Gamma_0 / E_{\gamma}^3$$

Mitglied der Helmholtz-Gemeinschaft

Unresolved strength in the continuum

Scattering cross sections in ⁹⁰Zr averaged over energy bins of 0.2 MeV, not corrected for branching, derived from the difference of the experimental spectrum and the atomic background (triangles) and from the resolved peaks only (circles).

Unresolved strength in the continuum

Experimental spectrum of ¹³⁹La (corrected for room background, detector response, efficiency, measuring time) and simulated spectrum of atomic background.

Scattering cross sections in ¹³⁹La averaged over energy bins of 0.1 MeV, not corrected for branching, derived from the difference of the experimental spectrum and the atomic background (triangles) and from the resolved peaks only (circles).

Simulations of $\gamma\text{-}\mathrm{ray}$ cascades

Monte Carlo simulations of γ -ray cascades from groups of levels in 100 keV bins (G. Rusev, dissertation)

⇒ Level scheme of $J = |J_0 \pm 1, 2|$ states constructed by using:

Backshifted Fermi-Gas Model with level-density parameters from T. v. Egidy, D. Bucurescu, PRC 80, 054310 (2009)

• Wigner level-spacing distributions

- ⇒ Partial decay widths calculated by using:
 o Photon strength functions approximated by Lorentz curves (www-nds.iaea.org/RIPL-2).
 - *E*1: parameters from fit to (γ, n) data
 - M1: global parametrisation of spin-flip resonances
 - E2: global parametrisation of isoscalar resonances
 - Porter-Thomas distributions of decay widths.
- ⇒ Feeding intensities subtracted and intensities of g.s. transitions corrected with calculated branching ratios Γ_0/Γ .

Simulations of $\gamma\text{-}\mathrm{ray}$ cascades

Simulated intensity distribution of transitions depopulating levels in a 100 keV bin around 9 MeV. \Rightarrow Subtraction of intensities of branching transitions.

⁸⁹Y data: N. Benouaret et al., PRC 79, 014303 (2009).
¹³⁹La data: A. Makinaga et al., PRC 82, 024314 (2010).

Simulations of $\gamma\text{-}\mathrm{ray}$ cascades

Distribution of branching ratios $b_0 = \Gamma_0/\Gamma$ versus the excitation energy as obtained from the simulations of γ -ray cascades. \Rightarrow Estimate of Γ_0 and σ_{γ} .

⁸⁹Y data: N. Benouaret et al., PRC 79, 014303 (2009).
¹³⁹La data: A. Makinaga et al., PRC 82, 024314 (2010).

Present (γ, γ) data

Mitglied der Helmholtz-Gemeinschaft

Present (γ, γ) data Corrected (γ, γ) data

Mitglied der Helmholtz-Gemeinschaft

Present (γ, γ) data Corrected (γ, γ) data (γ, n) data (× 0.85) NPA 175, 609 (1971)

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

HZDR

HZDR

Present (γ, γ) data $+(\gamma, n)$ data

 $E_0 = 15.24 \,\,{
m MeV}$ $\Gamma = 4.47 \text{ MeV}$ $\frac{\pi}{2}\sigma_0\Gamma = 60 \frac{NZ}{A}$ MeV mb

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

Dipole strength in ²⁰⁸Pb within the shell model

Photon-scattering at ELBE (γ, n) data from NPA 159, 561 (1970) Shell-model calculations including (2p-2h) excitations by B.A. Brown

R.S. et al., PRC 81, 054315 (2010)

Mitglied der Helmholtz-Gemeinschaft

Summary

- Study of dipole-strength distributions at high excitation energy and high level density via photon scattering.
- Simulations of statistical γ cascades: Estimate of intensities of inelastic transitions and correction of intensities of elastic transitions:
 - Reliable determination of σ_{γ} up to the neutron-separation energy S_n including unresolved strength.
 - Combination with (γ, p) and (γ, n) data gives information on σ_{γ} over the whole energy range from low excitation energy up to the giant dipole resonance.
 - Observation of extra strength in the range from 6 to 12 MeV not described in phenomenological approximations of dipole-strength functions.
- Instantaneous-shape sampling combined with QRPA used to describe the dipole strength in transitional nuclei.
- Shell-model calculations including (2p-2h) excitations describe the spreading of the GDR in ²⁰⁸Pb.
- Further developments are necessary to reproduce the extra strength below S_n .

 \Rightarrow Use of experimental absorption cross sections:

• $E_{\gamma} > S_n$ (GDR region):

 (γ, n) data, multiplied with 0.85 according to B.L. Berman et al., PRC 36, 1286 (1987)

 $\circ pprox 4 \text{ MeV} < E_{\gamma} < S_n$:

absorption cross sections from photon-scattering experiments at ELBE

E_γ < 4 MeV: calculated with three-Lorentz approximation according to A.R. Junghans et al., PLB 670, 200 (2008) deformation parameters for Mo isotopes taken from G. Rusev et al., PRC 73, 044308 (2006)

⇒ Comparison of the results with that obtained by using standard input strength functions (SLO and GLO); GDR peaks also multiplied with 0.85.

Nuclides studied in photon-scattering experiments

Ζ	Ru 92 3,55 m 2* 1214.28	RU 93 1644 9271 ¹⁶ 92 p11 111 m 161 111 m 161 111 m 161	Hu 94 51.8 m	Hu 95 1,65 h 4,17 12, 1308 1007: 121.	Ru 96 5,52	RL 97 2.9 c	Ru 98 1,88	Ru 99 12,7	Ru 100 12.6	Ru 101 17,0	Ru 102 31,6	Fu 109 39,35 d
	IC 91 83m 844 Protection 1 State 1 Sta	10.92 4,4 m p ⁺ 4.2 y totu //m, BEB,118	To 93 40510 276	To 94 Sin 42a	Tc 95	Tc 96	To 97	Tc 98 4,2 · 10 ⁶ a 170/582 #C0 - 1,87	To 99 A4h 91 Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin	To 100 15,8 s 15,8 s	To 101 14,2 m	To 102 13 m 53 s 14 m 53 s 14 m 14 m
42	Mto 90 5.7 h * * * * * * * * * * * *	Mo 91 Mo 91	Mo 92 14,84	Mo 93	Mo 94 9.25	Mo 95 15.92	Mo 96 16.68	Mo 97 9.55	Mo 98 24,13	Mo 99 66,0 h 2,12, 700,102 778, 778, 778, 778, 778, 778, 778, 778	Mo 100 9,63 1,15 + 10 ¹⁰ a 3,5 -	Mo 101 14,6 m #*C.8 2.6 *182.621 1913.905
	No 89 states internet	Nb 90 194+ 198+ 5 ⁻²⁴ 25	Nn 91 ensie and Maria	Nb 92 testa ar	Nb 93 10 3 100	Nb 94	Nb 95 Hon Hore	Nb 96 23,4 h p=0.7 17/8 Jan 108	Nb 97 533 12m (18) 12.	ND 98 51 # 251 144 144 146 146 146 146 146	ND 99	Nb 100
40	Zr 88 53,4 0	Zr 89 Wim Ret a Stan Stata	Zr 90 51,45	Zr 91 11,22	Zr 92 17,15	Zr 93 1,5 · 10º a	Zr 94 17,38	2r 95 54,0 d	Zr 96 2,60 3,9 * 10* a 26.50	2r 97 (5,8 h (* 14, * 508:1148) 355 -	Zr 98 30,7 s	Zr 99 2,1 5 0*0,5 30. 7460(546) 596. 9.m
	Y 87 138 88,35 14,387 14,3777 14,3777 14,3777 14,37777 14,3777777777777777777777777777777777777	Y 88 106,610	Y 80 1805 100 1644 - 100	Y 90 3.191. 843.6 5.25. 201. 5.35. 5.35. 5.35. 5.35. 5.35.	¥ 91 46,7 m 56,3 d 1 m 56,3 d	Y 92 3,54 h 5136 304 1436 301 449.	Y 93 10,1 h 10,1 h	Y 94 18.7 m 1617 009 50	Y 95 10,3 m #540. 9877:534 853.	Y 96 844 5314	Y 97	Y 98 444
38	Sr 86 9,86	Sr 87	Sr 88 82,58	Sr 89 50,5 c 50,5 c	Sr 90 28.64 a 6753 805 805	Sr 91 9.5 h F 1:27 Ha Ma	Sr 92 2,71 h	Sr 93 7,45 m 17 22, 34 19 7 22, 34 10 7 20, 35 10 7 20, 34 10 7 20	Sr 94 74 s	Sr 95 24,4 5 #*** *#*** 277 25:1:2247	Sr 96 1.0 s 1.0 s 1.0 s 1.0 s 1.0 s	Sr 97 420 ms 53(e,k.,) tons arc) 662(50°, 67"
	Пb 85 72 165 #C,36+C.45	Hb 86 102 - 137 - 1,5% - 11-	Hb 87 27,835 4,8 10° s	Hb 68 17,5 m	Ho 89 15,2 m	Rb 90 States	Pb 91 58 s 7 58 s 7 58 25% 3001245	Rb 92 4.5 g 17 84 7 86.282*1 570	Rb 93 5.8 s 7 48 888 42 588	Rb 94 2.60 s 17.78- 7.877 1578 1655 1378 1655 1378 ar	Ro 95 377 ms 1952 681 2852 681 2852 681	Rb 96 100 ms 105 ms 105,550 106,550 106,510 106,510 106,510
36	Кг 84 57 0 лс.эв+с.эг	Kr 85 4467 10755	Kr 86 17,3 +rc,scs	Kr 87 76,3 m n 3,5 m n 9,5 m n 9,5 m n 9,6 n * 960	Kr 88 2,84 h 1705 2.3 1709 (01) 0106 (02) 1500	Kr 89 5,18 m 57 87 19 5021 880; 14/2:504	Kr 90 32,3 s 1796.62 10 9122 540 510	Kr 91 8.6 s 7.635.64 9.100 State 7.100 State	Kr 92 1,84 s (r c) so (r 42, 219) (r 2,540	Kr 93 1,29 s 1,29 s 1,29 s 1,29 s 1,29 s 1,29 s 1,29 s 1,29 s 1,29 s 1,29 s	Kr 94 0,20 s 1,20 s 1,300 706 300 200 s 20	Kr 95 0,70 s
	Br 83 2,40 h	Br 84 63m 318m	Br 85 2,87 m 10/2 925	Br 86 55,1 a	Br 87 55,7 s #162,169; 159;169; 159;169; 1600;205,.	Br 88 15,3 s 17 44:55 1441 1441	Br 89 4,40 s 7 fti 1 ^{0650 195}	Br 90 1.9.8 7.60.97	.Br 91 0,61.8	Br 92 343 ms 71114 7000 1440 976	Br S3 102 ms	Br 94 70 ms
34	Se 82 8,73 1,05 · 10 * a %cm.oxe	Se 83	8e 84 3,1 m 140 9	Se 85 33.s 19.500 1427-	Se 86 14,1 s 12,1 s	Se 87 5.6 s 7240:304 274 468	Se 88 1,5 s	Se 89 0.4 s	Se 90	Se 91 0,27 s	5.979 58	<u>(6,800</u>
	48		50		52		54		56		58	N

nuclide	S _n	E ^{kin} e						
	MeV	(MeV) ELBE						
^{26}Mg	11.1	13.0 ^a						
^{92}Mo	12.7	6.0 ^b , 13.2 ^c						
^{94}Mo	9.7	13.2 ^c						
⁹⁶ Mo	9.2	13.2 ^c						
⁹⁸ Mo	8.6	(3.3, 3.8) ^{b,d} , 13.2 ^{c,e}						
^{100}Mo	8.3	(3.2, 3.4, 3.8) ^{b,d} , (7.8, 13.2) ^{c,e}						
⁸⁸ Sr	11.1	6.8, (9.0, 13.2, 16.0) ^f						
89 Y	11.5	7.0, (9.5, 13.2) ^g						
⁹⁰ Zr	12.0	(7.0, 9.0, 13.2) ^h						
^{139}La	8.8	11.5 ⁱ						
^{208}Pb	7.4	(9.0, 15.0) ^j						
^a R. Schv ^b G. Ruse ^c G. Ruse ^d G. Ruse ^e G. Ruse ^f R. Schv	vengne ev et al ev et al ev et al ev et al ev et al	r et al., PRC 79, 037303 (2009). ., PRC 73, 044308 (2006). ., PRC 79, 061302 (2009). ., PRL 95, 062501 (2005). ., PRC 77, 064321 (2008). r et al., PRC 76, 034321 (2007).						
⁵ N. Benouaret et al., PRC 79, 014303 (2009).								

- ^h R. Schwengner et al., PRC 78, 064314 (2008).
- ⁱ A. Makinaga et al., PRC 82, 024314 (2010).
- ^j R. Schwengner et al., PRC 81, 054315 (2010).

HZDR

absorption cross sections

M. Beard et al.

 (γ, n) cross sections

M. Beard et al.

M. Beard et al.

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

M. Beard et al.

Summary

- Calculation of photonuclear and radiative-capture cross sections with the code TALYS based on the statistical reaction model.
- Use of realistic input strength functions based on experimental photoabsorption cross sections (EPACS).
- Test of analytic expressions for strength functions as used in codes based on the statistical model and as provided by nuclear-reaction data bases.
- The EPACS results agree in most cases relatively well with the predictions using the standard-Lorentz (SLO) model, but differ from those using the Generalized-Lorentz (GLO) model.
- The enhancement of strength observed in the energy range from about 5 to 10 MeV has impact on neutron-capture cross sections for nuclides in which it is especially pronounced such as ¹³⁹La.

Photodissociation

Photodissociation reactions:

- (γ, n)
- (γ, p)
- (γ, α)

Method: photoactivation

- $(A, Z) + \gamma \Rightarrow (A, Z 1) + p$
- Measure decay rate of (A, Z 1)

$$N_{\rm act}(E_{\rm e}) = N_{\rm tar} \cdot \int_{E_{\rm thr}}^{E_{\rm e}} \sigma_{(\gamma,x)} \, \Phi_{\gamma}(E, E_{\rm e}) \, dE$$
$$N_{\rm act}(E_{\rm e}) = I_{\gamma}(E_{\gamma}) \cdot \varepsilon^{-1}(E_{\gamma}) \cdot p^{-1}(E_{\gamma}) \cdot \kappa_{\rm corr}$$

Photoactivation of ⁹²**Mo**

HZDR

Setup for photoactivation experiments

Mitglied der Helmholtz-Gemeinschaft

Activation yield

Activation yields of Mo isotopes normalised to the activation yield of the $^{197}{\rm Au}(\gamma,n)$ reaction.

Solid lines: NON-SMOKER, T. Rauscher and F.-K. Thielemann, ADNDT 88, 1 (2004)

Dashed lines: TALYS, A. Koning et al., AIP Conf. Proc. 769, 1154 (2005)

C. Nair et al., PRC 78, 055802 (2008) M. Erhard et al., PRC 81, 034319 (2010)

Activation yield

Activation yields of ¹⁴⁴Sm normalised to the activation yield of the ¹⁹⁷Au(γ , *n*) reaction.

C. Nair et al., PRC 78, 055802 (2008) C. Nair et al., PRC 81, 055806 (2010)

Summary

- Photodissociation of Mo isotopes and of ¹⁴⁴Sm studied via photoactivation at the ELBE accelerator.
- Determination of the photon flux in the electron-beam dump by means of the $^{197}{\rm Au}(\gamma,\textit{n})$ reaction.
- Measurement of weak decay rates in an underground lab.
- ${}^{92}Mo(\gamma, \alpha){}^{88}Zr$ and ${}^{144}Sm(\gamma, \alpha){}^{140}Nd$ reactions observed for the first time at astrophysically relevant energies.
- Rough agreement with predictions of Hauser-Feshbach models for (γ, n) and (γ, p) reactions. Predictions differ for (γ, α) reactions.

Collaborators

Data analysis - photon scattering:	R. Massarczyk (HZDR) G. Rusev (TUNL and Uni Durham)
Data analysis - photoactivation:	M. Erhard (HZDR, now at PTB) C. Nair (HZDR, now at Argonne) A. Junghans (HZDR)
ISS-QRPA calculations:	F. Dönau (HZDR) S. Frauendorf (Uni Notre Dame)
Calculations of reaction rates:	M. Beard (Uni Notre Dame)
Data acquisition:	A. Wagner (HZDR)
Experiments:	 D. Bemmerer (HZDR) N. Benouaret (Uni Alger) R. Beyer (HZDR) E. Birgersson (HZDR) E. Grosse (HZDR) R. Hannaske (HZDR) K. Kosev (HZDR) A. Makinaga (Uni Sapporo) M. Marta (HZDR, now at GSI) KD. Schilling (HZDR)

Mitglied der Helmholtz-Gemeinschaft