Impact of the γ -Ray Strength Function to Elastic and Inelastic Photon Scattering

G. Rusev

Department of Physics, Duke University

Triangle Universities Nuclear Laboratory

 $3^{\rm rd}$ Workshop on Level Density and Gamma Strength

May 23, 2011

Outlook

- High-Intensity γ -ray Source.
- $\bullet\,$ Photon-scattering experiments on $^{89}\text{Y},\,^{90}\text{Zr}$ and $^{98}\text{Mo}.$
 - *E*1 vs. *M*1 strength distributions.
 - Branching ratios for transitions to the ground state.
- Neutron-capture experiment on ⁸⁷Sr.

HI γ S Facility	Lin. Polarization	Monochromaticity	DANCE
0	00000000	000000	000
Overview			

High-Intensity γ -ray Source (HI γ S)

- 260 MeV electron accelerator
- 1.2 GeV storage ring
- Booster
- 2 free-electron lasers
- 1-100 MeV photon beams
- 0.5-5% energy spread
- linear or circular polarization

Impact of the γ -Ray Strength Function to Elastic and Inelastic Photon Scattering

Duke University & TUNL

HIγS Facility ○●	Lin. Polariza
Storage Ring	

Monochromaticity

Inverse Compton scattering

tion

Compton scattering

HIγS Facility ○●	
Storage Ring	

Е

Lin. Polarization

Monochromaticity

Inverse Compton scattering

Compton scattering

$$E_{\gamma} pprox rac{4\gamma^2 E_p}{1+\gamma^2 heta_f^2 + 4\gamma^2 E_p/E_e}$$

let
$$\gamma = 1/\sqrt{1-eta^2}$$

C. Sun et al., Phys. Rev. ST Accel. Beams 12, 062801 (2009)

G. Rusev

Duke University & TUNL

 HI₂S Facility
 Lin. Polarization
 Monochromaticity
 DANCE

 00
 0000000
 000000
 000

 Linearly Polarized Beam

Spin and Parity Determination: Even-Even Nuclei

z axis: beam direction; x axis: vector of polarization

Angular distribution

Measurement of the transition intensity at three different angles allows unique assignment of the e.m. character and multipolarity of the transition.

G. Rusev

Duke University & TUNL

Lin. Polarization 00000000

Monochromaticity

Linearly Polarized Beam

Spin and Parity Determination: Even-Even Nuclei (⁹⁰Zr)

Duke University & TUNL

Duke University & TUNL

HIγS Facility οο	Lin. Polarization	Monochromaticity	DANCE
Giant M1 Resonance			

Giant M1 Resonance in ⁹⁰Zr

S. K. Nanda et al., Phys. Rev. Lett. 51, 1526 (1983)

Duke University & TUNL

Impact of the γ -Ray Strength Function to Elastic and Inelastic Photon Scattering

Lin. Polarization

Monochromaticity

HI₇S-Beam Properties: Linear Polarization

M1/E2 Multipole-Mixing Ratio (¹¹B)

z axis: beam direction; x axis: vector of polarization

5.0 4.5

4.0

1.0

0.8.0

Lin. Polarization

Monochromaticity

 $HI\gamma$ S-Beam Properties: Linear Polarization

 $1/2^{-} \rightarrow 3/2^{+} \rightarrow 1/2^{-}$

0.4 0.6

0.2

Spin and Parity Determination: Odd-Mass Nuclei (⁸⁹Y)

G. Rusev

Duke University & TUNL

Impact of the γ -Ray Strength Function to Elastic and Inelastic Photon Scattering

1.4 1.6 1.8

 $1/2^{-} \rightarrow 1/2^{*/-} \rightarrow 1/2^{-}$

0.8 1.0 1.2

I, (hor) / I, (135°)

 $1/2^{\circ} \rightarrow 3/2^{\circ} \rightarrow 1/2^{\circ} \delta = 0$

5.0 4.5

4.0

1.0

0.8

Lin. Polarization

Monochromaticity

 $HI\gamma$ S-Beam Properties: Linear Polarization

 $1/2^{-} \rightarrow 3/2^{+} \rightarrow 1/2^{-}$

 $1/2^{\circ} \rightarrow 3/2^{\circ} \rightarrow 1/2^{\circ}$

I, (hor) / I, (135°)

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.2

Spin and Parity Determination: Odd-Mass Nuclei (⁸⁹Y)

G. Rusev

Impact of the γ -Ray Strength Function to Elastic and Inelastic Photon Scattering

Lin. Polarization

Monochromaticity

Dipole Strength

 $\vec{f}_{E1}(E_{\gamma})/\vec{f}_{M1}(E_{\gamma})$ Ratio

⁹⁸Mo: G. Rusev *et al.*, Phys. Rev. C **77**, 064321 (2008)

G. Rusev

Duke University & TUNL

Impact of the γ -Ray Strength Function to Elastic and Inelastic Photon Scattering

$HI\gamma S$ Facility	Lin. Polarization	Monochromaticity	DANCE
		000000	
Floor Plan			

Measurement of the Beam-Energy Distribution

• Large volume HPGe detector.

G. Rusev

• Cu attenuators placed 40 m away from the HPGe detector.

G. Rusev

Duke University & TUNL

Branching Transitions to the Low-lying Levels in ⁹⁰Zr

The monoenergetic beam provides separation of the ground-state transitions from the branching transitions.

G. Rusev

HIγS Facility	Lin. Polarization	Monochromaticity	DANCE
οο		00000	000
Branching Ratios			

Branching Transitions to the Low-lying Levels in ⁹⁰Zr

Impact of the γ -Ray Strength Function to Elastic and Inelastic Photon Scattering

N. Benouaret et al., Phys. Rev. C 79, 014303 (2009)

G. Rusev

No correction for bypass transitions applied!

Duke University & TUNL

Duke University & TUNL

Dipole Strength	HIγS Facility οο	Lin. Polarization	Monochromaticity ○○○○○●	DANCE 000
	Dipole Strength			

Gamma-Ray Strength Function in ⁹⁸Mo

 (γ, n) H. Beil *et al.*, Nucl. Phys. **A227**, 427 (1974) (n, γ) J. Kopecky and M. Uhl, Proceedings of the NEA/ENEA and IAEA (1994) $({}^{3}\text{He},{}^{3}\text{He}'\gamma)$ M. Guttormsen *et al.*, Phys. Rev. C **71**, 044307 (2005) (γ, γ') G. Rusev *et al.*, Phys. Rev. C **77**, 064321 (2008)

(n, γ) J. Kopecky and M. Uhl, Proceedings of the NEA/ENEA and IAEA (1994) (${}^{3}\text{He}, {}^{3}\text{He}' \gamma$) M. Guttormsen *et al.*, Phys. Rev. C **71**, 044307 (2005) (γ, γ') G. Rusev *et al.*, Phys. Rev. C **77**, 064321 (2008)

HI₂S Facility 00 Lin. Polarization

Monochromaticity

⁸⁷Sr(n, γ) Experiment at DANCE

- Astrophysics:
 - Neutron density during the *s* process
 - ⁸⁷Rb-⁸⁷Sr chronometric pair
- Nuclear structure:
 - Pygmy resonance in ⁸⁸Sr
 - Low-energy tail of the GDR in ⁸⁸Sr

G. Rusev

Duke University & TUNL

21/24

Impact of the γ -Ray Strength Function to Elastic and Inelastic Photon Scattering

HIγS Facility	Lin. Polarization	Monochromaticity	DANCE

Summary

- Cascade simulations with standard assumptions for the level density (BSFG model) and strength functions (GDR fit, RPA calculations, RIPL) provide a good estimate for the branching ratios of transitions to the ground state.
- Measured ratios $\vec{f}_{E1} (E_{\gamma}) / \vec{f}_{M1} (E_{\gamma})$ show that the M1 resonance in ⁹⁰Zr is narrower than that proposed in RIPL while the M1 strength in ⁹⁸Mo is spread over a wide energy range.
- The *E*1 strength below the neutron-separation energy follows the extrapolation of the Lorentzian fit of the GDR.
- The E2 strength seems to be important in (n, γ) reactions.

Monochromaticity

Acknowledgements

E. Kwan¹ R. Raut A. P. Tonchev W. Tornow

- A. S. Adekola² C. T. Angell³ S. L. Hammond H. J. Karwoswski
- J. H. Kelley C. Huibregse
- R. Schwengner and the Nuclear Division at FZDA. Couture and the Nuclear Division at LANLV. Werner, Yale University

This work was supported in part by the US Department of Energy under grants DE-FG02-97ER41033, DE-FG02-97ER41041, DE-FG02-97ER41042 and DE-FG52-09NA29448.

- ¹ Present address: Lawrence Livermore National Laboratory
- ² Present address: Oak Ridge National Laboratory
- ³ Present address: Lawrence Berkeley National Laboratory