Nuclei studied at the Oslo Cyclotron Laboratory

Hilde-Therese Nyhus, Ph.D. student UiO

3rd Workshop on Level Density and Gamma Strength

26. May, 2011

Layout

Introduction

- Which energy region?
- 2 Oslo experiments
 - Experimental setup
 - Basic ideas of the Oslo method
 - Normalizing

3 Results

- Level density
- Thermodynamic results
 - Micro canonical ensemble
- Radiative strength function
- Scissor mode
- Enhanced strength in Sn nuclei
- Upbend

Which energy region?

Introduction to Oslo experiments

- \rightarrow extract NLD and RSF simultaneously
 - The functional form is determined from the experimental data alone
 - Slope found by normalizing to other experimental data

Which energy region?

What type of nuclei has been studied?

- Magic nuclei: ^{116–119,121,122}Sn, ^{205–208}Pb
- Rare earth isotopes: 148,149 Sm, ${}^{160-164}$ Dy, 166,167 Er, ${}^{170-172}$ Yb
- Lighter nuclei: ^{44,45}Sc, ⁴⁶Ti, ^{50,51}V, ^{56,57}Fe, ^{93–98}Mo
- -Scissor mode
- -Neutron skin oscillation?
- -Upbend

Which energy region?

Which energy region?

Experimental setup Basic ideas of the Oslo method Normalizing

Experimental setup

- Beam: p, d, ³He, α .
- Reactions: (p,p'γ), (³He,³He'γ), (p,dγ), (p,tγ), (³He,αγ)
- Target: $\sim 1-2 \text{ mg/cm}^2$ thick foil of enriched target.

Experimental setup Basic ideas of the Oslo method Normalizing

Experimental setup

• Detector array:

- * 28 Nal(Tl) γ -detectors, 5" \times 5", $\epsilon \approx 15\%$ at $E_{\gamma} = 1.33$ MeV.
- * 64 Si Δ E-E particle telescopes $\Delta \theta \approx 2$.

Angle between side rim and vertical=15.77 degrees

Experimental setup Basic ideas of the Oslo method Normalizing

Particle identification

Experimental setup Basic ideas of the Oslo method Normalizing

Particle- γ -coincidence spectra

From the known Q-values the excitation energy of the nuclei are calculated from the detected ejectile energy by using reaction kinematics.

Experimental setup Basic ideas of the Oslo method Normalizing

Particle- γ -coincidence spectra

From the known Q-values the excitation energy of the nuclei are calculated from the detected ejectile energy by using reaction kinematics.

Experimental setup Basic ideas of the Oslo method Normalizing

Particle- γ -coincidence spectra

From the known Q-values the excitation energy of the nuclei are calculated from the detected ejectile energy by using reaction kinematics.

Experimental setup Basic ideas of the Oslo method Normalizing

A short introduction to the Oslo method

- Unfold the γ -ray spectra.
- Isolate the first (primary) gamma ray from each $\gamma\text{-decay}$ cascade.

Experimental setup Basic ideas of the Oslo method Normalizing

Brink-Axel's hypothesis

Excitation modes built on excited states have the same properties as those built on the ground state.

 $ightarrow \mathcal{T}(E_\gamma)$ independent of excitation energy.

Factorization according to Fermis Golden rule

$$\mathsf{P}(\mathsf{E}_{\mathsf{i}},\mathsf{E}_{\gamma}) \propto \mathcal{T}(\mathsf{E}_{\gamma})\rho(\mathsf{E}_{\mathsf{i}}-\mathsf{E}_{\gamma}), \text{ where } \mathsf{E}_{\mathsf{f}}=\mathsf{E}_{\mathsf{i}}-\mathsf{E}_{\gamma}$$
 (1)

Least-squares method obtain $\rightarrow \mathcal{T}(E_{\gamma})$ and $\rho(E_i - E_{\gamma})$

$$\widetilde{\rho}(E_i - E_{\gamma}) = A \exp[\alpha(E_i - E_{\gamma})] \rho(E_i - E_{\gamma})$$
(2)

and

$$\widetilde{\mathcal{T}}(E_{\gamma}) = B \exp(\alpha E_{\gamma}) \mathcal{T}(E_{\gamma}), \qquad (3)$$

Experimental setup Basic ideas of the Oslo method Normalizing

Does it work?

Experimental setup Basic ideas of the Oslo method Normalizing

- Strength function extracted for 3 sets of initial excitation energies
- Striking similarity ⇒ indicates no strong temperature dependence in the strength function

Experimental setup Basic ideas of the Oslo method Normalizing

Normalizing $\mathcal{T}(E_{\gamma})$ and $\rho(E_i - E_{\gamma})$

$$ho(E_i - E_\gamma)$$
 :

- Known levels at low energy
- Neutron resonance data → extrapolated by the BS Fermi-gas model

 $\mathcal{T}(E_{\gamma})$:

 Calculated from average total radiative width < Γ_γ >

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

H. K. Toft et. al., PRC 83, 044320 (2011) $\!\!\rightarrow$

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

Microcanonical ensemble

Entropy $S(E) = \ln \rho(E) + S_0$ Temperature $T = \left(\frac{\delta S}{\delta E}\right)_V^{-1}$

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

- 2-3 MeV: T=0.51(2) MeV
- 3-4 MeV: T=0.60(2) MeV
- 4-5 MeV: T=0.57(3) MeV

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

Scissor mode

- An excitation mode that can be built on every excited state.
- When it decays to the state it is built on it emits a ~ 3 MeV γ.

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

Scissor mode

- The width of the resonance seems to vary slightly for different nuclei.
- The total integrated strength is about the same. Average value of 6.6(4) μ_N^2

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

Scissor mode

- The width of the resonance seems to vary slightly for different nuclei.
- The total integrated strength is about the same. Average value of 6.6(4) μ_N^2

Level density Thermodynamic results Scissor mode Enhanced strength in Sn nuclei Upbend

Enhanced strength in *Sn* nuclei

- Enhanced strength in the energy region 4 $< E_{\gamma} < 11$ MeV.
- The electromagnetic character is not established, but E1 character established in exotic $^{129-133}Sn$ isotopes.
- Might stem enhanced GMDR or from *E1 neutron skin* oscillation.

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

H. K. Toft et. al., PRC 83, 044320 (2011) Not clear how to model the resonances

- Red line: Total strength → GLO for GEDR, SLO for GMDR, Gausian dist. for pygmy
- SLO failes for GEDR in low γ -region

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

H. K. Toft et. al., PRC 83, 044320 (2011)

How do the strength function depend on $\ensuremath{\mathsf{N}}\xspace^2$

- Tail of resonance decreases in strength as N increas.
- Log-slope change occurs for higher E_{γ} in ^{121,122}Sn than for ^{116,117}Sn (\approx 4.5 MeV for ¹¹⁶Sn, \approx 5.2 MeV for ¹²²Sn)
- Centroids increas with N \rightarrow 8.0(1) MeV for $^{116,117}Sn$ 8.2(1) MeV for $^{118,119}Sn$ 8.4(1) MeV for ^{121}Sn 8.6(2) MeV for ^{122}Sn

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

H. K. Toft et. al., PRC 83, 044320 (2011)

Is there a linear relation between pygmy centroid and $\ensuremath{\mathsf{N}}\xspace?$

$$E_{
m pyg} = 2.0(16) + 0.090(23)N$$

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei Upbend

Nuclear cross sections

H. K. Toft et. al., PRC 83, 044320 (2011)

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei **Upbend**

Upbend

Level density Thermodynamic results Scissor mode Enhanced strength in *Sn* nuclei **Upbend**

A. C. Larsen and S. Goriely, PRC 82, 014318 (2010)

- No proper theoretical description of the upbend structure
- 3 fits to the experimental data: *Blue solid line=GLO with constant temp. $T_f = 0.3 \text{ MeV}$ *Blue dashed line=GLO + an low lying resonance represented by a SLO *Dash-dotted line=Modyfied the energy dependent width of the GLO model. 29/32

- With the Oslo method one can simultaneously extract the level density and RSF.
- Important quantities that give rich information about nuclear structure → resonances, splitting of Cooper pairs...
- Results extracted at the OCL have astrophysical consequences.