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Time-dependent DFT
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Time-dependent Hartree-Fock (TDHF) equation

Time-dependent Kohn-Sham (TDKS) equation
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TDDFT for superfluid systems
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Time-dependent Hartree-Fock-Bogoliubov (TDHFB) equation

Time-dependent Kohn-Sham-Bogoliubov (TDKSB) equation
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Small-amplitude approximation
--- Linear response (RPA) equation ---
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• Tedious calculation of residual interactions

• Computationally very demanding, 

especially for deformed systems.

i

jn

mnjmi

i

nj

mijmnmnjmi

h
B

A

φ
ρ

φ

φ
ρ

φδδεε

ρ

ρ

0

0

,

, )(

∂
∂

=

∂
+−=

However, in principle, the self-consistent single-particle Hamiltonian 

should contain everything. We can avoid explicit calculation of 

residual interactions.



Finite Amplitude Method
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Residual fields can be estimated by the finite difference method:

T.N., Inakura, Yabana, PRC76 (2007) 024318.

Starting from initial amplitudes X(0) and Y(0), one can use an iterative 
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Programming of the RPA code becomes very much trivial, because we 

only need calculation of the single-particle potential, with different bras 

and kets.

Starting from initial amplitudes X(0) and Y(0), one can use an iterative 

method to solve the following linear-response equations.



Finite amplitude method for superfluid systems
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Residual fields can be calculated by

Avogadro and TN, PRC in press (arXiv:1104.3692)

QRPA equations are
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Numerical Details

• SkM* interaction (no pairing)

• 3D mesh in adaptive coordinate

• Rbox = 15 fm

• Complex energy with Γ = 1.0 MeV

• ∆E = 0.3 MeV

up to E = 38.1 MeV (128 points)

• Energy-paralleled calc. on PACS-CS adaptive coordinate

15 fm

• Energy-paralleled calc. on PACS-CS adaptive coordinate
PRC71, 024301

PACS-CS @ Univ. of Tsukuba



Electric Dipole strength distributions

• 3D mesh
• SkM*
• Rbox = 15 fm
• No pairing

40 spherical nuclei

176 prolate nuclei

59 oblate nuclei

72 triaxial nuclei

-------------------------

339 nuclei



Magic numbers for PDR emergence

N=Z
N=15 (Up to 10 MeV)

N=29



Next magic number: N=51 

Z=24

Z=28

Z=32



• Magic numbers: N=15, 29, 51, D

• Importance of weakly bound orbits with l=0, 1, 

and 2.

Magic numbers and low-l orbits

s1/2 p3/2,1/2 d5/2
d3/2 g9/2

f5/2 h11/2s, d, gf7/2
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PDR strength is correlated with any quantity? 
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Rn-Rp [ fm ] Sn [ MeV ] (N-Z)2/A2

Piekarewicz, PRC73 (2006) 044325.

Linear correlation was found for Rn-Rp for 

neutron-deficient Sn (spherical) isotopes



Universal correlation with skin thickness

• PDR fraction/ΔRnp shows a universal rate.

• The rate is about 0.2 /fm.



Axially deformed superfluid nuclei
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• HFB equations are solved in the 2D coordinate space, assuming the axial 

symmetry for the SkM* functional with the cutoff of Eqp < 60 MeV.

• The pairing energy functional is the one determined by a global fitting to 

deformed nuclei (Yamagami, Shimizu, TN, PRC 80, 064301 (2009))

• QRPA matrix is calculated in the quasiparticle basis (E2qp < 60 MeV).

• Neglect the residual Coulomb interaction



Shape phase transition in the EDF approach

Intrinsic Q moment

NdSm

Stoitsov et al., UNEDF collaboration



QRPA calculation of photoabsorption cross section

SkM* functional

Intrinsic Q moment

K.Yoshida and TN, arXiv:1008.1520; 
PRC in press: (Cal. at RICC)



PDR in rare-earth nuclei

• Larger PDR strength for deformed nuclei

• Experimental data suggest a concentrated E1 
strength in E=5.5-8 MeV.

• Calculation beyond QRPA is necessary.



Summary

• Linearized (small-amplitude) TDDFT can be 

formulated in several different ways.

– Finite amplitude method (PRC76, 024318) provides an 

alternative approach to (Q)RPA.

– FAM does not require explicit calculations of residual 

interactions, thus, fully self-consistent calculations for interactions, thus, fully self-consistent calculations for 

deformed nuclei can be easily achieved.

• Systematic calculations of photoabsorption cross 

sections in light to heavy nuclei

– Reproduce the GDR peak and shape evolution

– Magic numbers for PDR (N=15, 29, 51, D)

– Universal correlation between the PDR fraction and the 

neutron skin thickness; m1(PDR)/m1 ≈(0.2 / fm)ΔRnp.


