Systematic calculation of photoresponse with the Skyrme functional

Takashi Nakatsukasa
Paolo Avogadro, Tsunenori Inakura, Kenichi Yoshida
RIKEN Nishina Center

Time-dependent DFT

Time-dependent Kohn-Sham (TDKS) equation
Time-dependent Hartree-Fock (TDHF) equation

$$
\begin{gathered}
i \frac{\partial}{\partial t} \phi_{i}(t)=\left\{h(t)+V_{\mathrm{ext}}(t)\right\} \phi_{i}(t) \\
i \frac{\partial}{\partial t} \rho(t)=\left[h(t)+V_{\mathrm{ext}}(t), \rho(t)\right] \\
\rho(\vec{r}, t)=\sum_{i=1}^{N}\left|\phi_{i}(\vec{r}, t)\right|^{2} \\
h(t)=h[\rho(t)]
\end{gathered}
$$

TDDFT for superfluid systems

Time-dependent Kohn-Sham-Bogoliubov (TDKSB) equation Time-dependent Hartree-Fock-Bogoliubov (TDHFB) equation

$$
\begin{aligned}
& i \frac{\partial}{\partial t} \Psi_{i}(t)=\left\{H(t)+V_{\mathrm{ext}}(t)\right\} \Psi_{i}(t) \\
& i \frac{\partial}{\partial t} R(t)=\left[H(t)+V_{\mathrm{ext}}(t), R(t)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{i}=\binom{U_{i}}{V_{i}} \quad H(t)=H[R(t)]=\left(\begin{array}{cc}
h & \Delta \\
-\Delta^{*} & -h^{*}
\end{array}\right) \\
& R(t)=\sum_{i} \Psi_{i} \Psi_{i}^{+}=\left(\begin{array}{cc}
\rho(t) & \kappa(t) \\
-\kappa^{*}(t) & 1-\rho^{*}(t)
\end{array}\right)
\end{aligned}
$$

Small-amplitude approximation --- Linear response (RPA) equation ---

$$
\begin{aligned}
& \left\{\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}\binom{X_{m i}(\omega)}{Y_{m i}(\omega)}=-\binom{\left(V_{\text {ext }}\right)_{m i}}{\left(V_{\text {ext }}\right)_{i m}} \\
& A_{m i, n j}=\left(\varepsilon_{m}-\varepsilon\right) \delta_{m n} \delta_{i j}+\left\langle\phi_{m}\right| \frac{\partial h}{\partial \rho_{n j}}\left|\phi_{\rho_{0}}\right\rangle \\
& B_{m i, n j}=\left\langle\phi_{m} \frac{\partial h}{\partial \rho_{j n}}\right| \rho_{\rho_{0}}\left|\phi_{i}\right\rangle \\
& \text { - Tedious calculation of residual interactions } \\
& \text { - Computationally very demanding, } \\
& \text { especially for deformed systems. }
\end{aligned}
$$

However, in principle, the self-consistent single-particle Hamiltonian should contain everything. We can avoid explicit calculation of residual interactions.

Finite Amplitude Method

T.N., Inakura, Yabana, PRC76 (2007) 024318.

Residual fields can be estimated by the finite difference method:

$$
\begin{aligned}
& \delta h(\omega)=\frac{1}{\eta}\left(h\left[\left\langle\psi^{\prime}\right|,|\psi\rangle\right]-h_{0}\right) \\
& \left|\psi_{i}\right\rangle=\left|\phi_{i}\right\rangle+\eta\left|X_{i}(\omega)\right\rangle, \quad\left\langle\psi_{i}^{\prime}\right|=\left\langle\phi_{i}\right|+\eta\left\langle Y_{i}(\omega)\right|
\end{aligned}
$$

Starting from initial amplitudes $X^{(0)}$ and $Y^{(0)}$, one can use an iterative method to solve the following linear-response equations.

$$
\begin{aligned}
& \omega\left|X_{i}(\omega)\right\rangle=\left(h_{0}-\varepsilon_{i}\right)\left|X_{i}(\omega)\right\rangle+\hat{Q}\left\{\delta h(\omega)+V_{\mathrm{ext}}(\omega)\right\}\left|\phi_{i}\right\rangle \\
& \omega\left\langle Y_{i}(\omega)\right|=-\left\langle Y_{i}(\omega)\right|\left(h_{0}-\varepsilon_{i}\right)-\left\langle\phi_{i}\right|\left\{\delta h(\omega)+V_{\mathrm{ext}}(\omega)\right\} \hat{Q}
\end{aligned}
$$

Programming of the RPA code becomes very much trivial, because we only need calculation of the single-particle potential, with different bras and kets.

Finite amplitude method for superfluid systems

Avogadro and TN, PRC in press (arXiv:1104.3692)
Residual fields can be calculated by

$$
\begin{aligned}
& \delta h(\omega)=\frac{1}{\eta}\left\{h\left[\widetilde{v}^{*}, v\right]-h_{0}\right\} \\
& \left.\delta \Delta(\omega)=\frac{1}{\eta}\left\{\Delta \widetilde{v}^{*}, u\right]-\Delta_{0}\right\}
\end{aligned}
$$

$$
\begin{array}{ll}
v=V+\eta U X, & \widetilde{v}^{*}=V+\eta U^{*} Y \\
u=U+\eta V^{*} Y, & \widetilde{v}^{*}=U^{*}+\eta V^{*} X
\end{array}
$$

QRPA equations are

$$
\begin{array}{ll}
\left(E_{\mu}+E_{v}-\omega\right) X_{\mu \nu}+\delta H_{\mu \nu}=0 \\
\left(E_{\mu}+E_{\nu}+\omega\right) Y_{\mu \nu}+\delta \widetilde{H}_{v \mu}^{*}=0
\end{array} \quad\left(\begin{array}{cc}
\delta H_{\mu \nu} \\
\delta \widetilde{H}_{\mu \nu} &
\end{array}\right)=W^{+}\left(\begin{array}{cc}
\delta h & \delta \Delta \\
\delta \widetilde{\Delta}^{+} & -\delta h^{+}
\end{array}\right) W
$$

Numerical Details

- SkM* interaction (no pairing)
-3D mesh in adaptive coordinate
- $\mathrm{R}_{\text {box }}=15 \mathrm{fm}$
- Complex energy with $\Gamma=1.0 \mathrm{MeV}$
- $\Delta \mathrm{E}=0.3 \mathrm{MeV}$ up to $\mathrm{E}=38.1 \mathrm{MeV}$ (128 points)
- Energy-paralleled calc. on PACS-CS

adaptive coordinate PRC71, 024301

PACS-CS @ Univ. of Tsukuba

Electric Dipole strength distributions

- 3D mesh
- SkM*
- $\mathrm{R}_{\mathrm{box}}=15 \mathrm{fm}$
- No pairing

$\frac{\operatorname{Sn}}{C d}$								
RuNu								
MownN								

Ge 1

Fennn (NANMNNMNMNA Fe

Ti
40 spherical nuclei 176 prolate nuclei 59 oblate nuclei 72 triaxial nuclei

Magic numbers for PDR emergence

Next magic number: $\mathrm{N}=51$

Magic numbers and low-/ orbits

- Magic numbers: $\mathrm{N}=15,29,51, \ldots$
- Importance of weakly bound orbits with $l=0,1$, and 2.

PDR strength is correlated with any quantity?

Linear correlation was found for $\mathrm{R}_{\mathrm{n}}-\mathrm{R}_{\mathrm{p}}$ for neutron-deficient Sn (spherical) isotopes

Universal correlation with skin thickness

- PDR fraction/ $\Delta R_{n p}$ shows a universal rate.
- The rate is about $0.2 / \mathrm{fm}$.

Axially deformed superfluid nuclei

$$
\begin{aligned}
& \left(\begin{array}{cc}
h-\lambda & \Delta \\
-\Delta^{*} & -(h-\lambda)^{*}
\end{array}\right)\binom{U_{\mu}(\rho, z ; \sigma)}{V_{\mu}(\rho, z ; \sigma)}=E_{\mu}\binom{U_{\mu}(\rho, z ; \sigma)}{V_{\mu}(\rho, z ; \sigma)} z+\cdots \\
& \left\{\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}\binom{X_{m i}(\omega)}{Y_{m i}(\omega)}=0 \underset{\rho}{\square}
\end{aligned}
$$

- HFB equations are solved in the 2D coordinate space, assuming the axial symmetry for the SkM^{*} functional with the cutoff of $E_{\mathrm{qp}}<60 \mathrm{MeV}$.
- The pairing energy functional is the one determined by a global fitting to deformed nuclei (Yamagami, Shimizu, TN, PRC 80, 064301 (2009))
- QRPA matrix is calculated in the quasiparticle basis ($E_{2 q p}<60 \mathrm{MeV}$).
- Neglect the residual Coulomb interaction

Shape phase transition in the EDF approach

QRPA calculation of photoabsorption cross section

SkM* functional

PDR in rare-earth nuclei

- Larger PDR strength for deformed nuclei
- Experimental data suggest a concentrated E1 strength in $\mathrm{E}=5.5-8 \mathrm{MeV}$.
- Calculation beyond QRPA is necessary.

Summary

- Linearized (small-amplitude) TDDFT can be formulated in several different ways.
- Finite amplitude method (PRC76, 024318) provides an alternative approach to (Q)RPA.
- FAM does not require explicit calculations of residual interactions, thus, fully self-consistent calculations for deformed nuclei can be easily achieved.
- Systematic calculations of photoabsorption cross sections in light to heavy nuclei
- Reproduce the GDR peak and shape evolution
- Magic numbers for PDR ($\mathrm{N}=15,29,51, \ldots$)
- Universal correlation between the PDR fraction and the neutron skin thickness; $m_{1}(P D R) / m_{1} \approx(0.2 / f m) \Delta R_{n p}$.

