Neutron capture study by ANNRI

The 3rd workshop on Level Density and Gamma Strength 23-27th May 2011 Univ. of Oslo

Shoji NAKAMURA

Research Group for Applied Nuclear Physics Japan Atomic Energy Agency

M.Furusaka³, K.Furutaka¹, S.Goko^{1,†}, K.Y.Hara¹, H.Harada¹, F.Hiraga³, M.Igashira²,T.Kamiyama³, T.Katabuch², K.Hirose¹, A.Kimura¹, T.Kin¹, K.Kino³, F.Kitatani¹, Y.Kiyanagi³, M.Koizumi¹, M.Mizumoto², M.Ohta^{1,‡}, M.Oshima¹, and Y.Toh¹

¹ Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency

² Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

³ Graduated School of Engineering, Hokkaido University

[†] Present address: *Hokkaido University*

† Present address: Osaka University

Table of Contents

 Overview of J-PARC and MLF locations, instrument suite
about ANNRI 4π Ge detector
Some of Highlight Data Cm-244, Zr-93
Summary

Damage due to the Earthquake

Materials and Life Science Experimental Facility

Materials and Life Science Experimental Facility

Accurate Neutron –Nucleus Reaction Instrument: ANNRI

Accurate Neutron –Nucleus Reaction Instrument: ANNRI

Neutron Source: J-PARC/MLF		
	3GeV Proton Spallation	
Beam Condition: 120 kW, 25 Hz		
Pulse Width	: 100 ns(double bunch)	
Beam Line	: BL04	
Flight Path	: 21.5m, 27m	
Notch filters	: Mn, Co, In, Ag, Cd	

Measurement of Neutron-Capture Cross Section with 4π Ge detector at ANNRI

 $2 \times 7ch = 14ch$ **Eight Coaxial-type Ge detectors :** $8 \times 1ch = 8ch$ Total: 22ch

Energy Resolution * @1.33MeV: 9.8 keV (On beam) 2.4 keV (Off beam) Peak Efficiency @1.33MeV: $3.64 \pm 0.11\%$ **Time Resolution (DAQ):** 10 ns (Max 16.7ms) Max.Event Rate (DAQ): 300 k events/s.

T. Kin et. al., the 2009 NSS-MIC Conf. Rec., N24-2, (2009).

Two Cluster Ge detectors with BGO anti-coincidence shields

Capture γ**-ray spectrum of CI-35**

P.H. Spectra gated by TOF regions

Pulsed neutron sources

Facility	Beam	Beam power	Beam pulse width	Flux
Reference	energy	n Intensity	Pulse per sec	
IRMM, GELINA ND2007, p.563	Electron 100 MeV	6 kW	1 ns 800 Hz	@ 12 m
ORNL, ORELA	Electron	5 kW	8 ns	@ 40 m
ND2007, p.441	180 MeV	10 ¹³ n/s	525 Hz	
Kyoto, e Linac ND2007, p.591	Electron 30 MeV	1 kW	100 ns 100 Hz	@ 10 m
CERN, n-TOF	Proton	9 kW	6 ns	4 × 10 ⁵ n/cm²/s
ND2007, p.537	20 GeV	10 ¹⁵ n/s	0.4 Hz	@ 185 m
LANL, Lujan ND2007, p.415	Proton 0.8 GeV	80 kW	135 ns 20 Hz	@ 20 m
J-PARC, MLF	Proton	1 MW	~100 ns	∼ 10 ⁹ n/cm²/s
(Expected)	3 GeV	~10 ¹⁷ n/s	25 Hz	@ 22 m

Comparison of neutron fluxes at other facilities

Some of Highlight Data Measurement of ²⁴⁴Cm at J-PARC/MLF/ANNRI

$\mathbf{E}_n[\mathbf{eV}]$	Present work	JENDL-3.3
7.67	1.0	1.0
16.77	0.1191 ± 0.0020	0.0981
22.85	0.0352 ± 0.0017	0.0315
34.99	0.1142 ± 0.0034	0.1022
85.96	0.1047 ± 0.0052	0.1643
96.12	0.0960 ± 0.0089	0.0593
132.8	0.0747 ± 0.0084	0.0779

 \ast The total systematic uncertainty : 6 %.

S.Goko *et al.*, J.Nucl.Sci.Technol, 47, p.1097 (2010).

Neutron Capture Cross Sections of Zr-93

Thermal-neutron capture cross section

Present (Preliminary) : (Lower limit: 0.58 ± 0.07), estimated $0.70 \pm 0.08b$ Nakamura et al.(2007) : (Lower limit: 0.63 ± 0.02), estimated $0.76 \pm 0.13b$ JENDL-4 : 2.239 b, ENDF-B/VII : 0.695 b

Summary

The operation of a new experimental apparatus called "ANNRI" in the MLF @at J-PARC has been started for neutron-capture cross section measurements of MAs and FPs.

Advantages of ANNRI: Intense Neutron Flux and High Resolution

Open for users on following research fields:

- Nuclear Data Measurements
 - for advanced reactor systems
- Nuclear Astrophysics
- Radionuclide Quantification
- Multiple prompt gamma-ray analysis

..... etc.

Damage after Great East-Japan Earthquake on 11 March, 2011

near Linac Facility

Damage after Great East-Japan Earthquake on 11 March, 2011

Damage after Great East-Japan Earthquake on 11 March, 2011

Main Control Room

50GeV (MR) Synchrotron

Aim for Restoration

Damage after Great East-Japan Earthquake on 11 March, 2011

Removal of Pb shield walls ²²

Recovery Prospects

Dec., 2011~ Beam tuning & Delivery Jan., 2012~ 2 cycle operation Beam power: 100-kW

Contact

If there are anything (e.g. experimental proposals), please drop a line to contact parsons: Contact parson: Dr. Hideo HARAD E-mail: <u>harada.hideo@jaea.go.jp</u> TEL: (+81) 029-282-6789

Sub-contact parson: Dr. Atsushi KIMURA E-mail: kimura.atsushi04@jaea.go.jp

Materials in reserve

Current status of nuclear data Relation between Experiment and Evaluation

Thermal neutron capture cross section

	References	¹⁰⁷ Pd(n, γ)
Exp	J, NST, 44, 103 (2007)	$9.16 \pm 0.27 \mathrm{b}$
Eva 1	Mughabghab(1981) Mughabghab(2006)	1.8 ± 0.2 b 2.54 \pm 0.20 b
Eva 2	JENDL-3.3 (2002)	2.007 b

Current status of nuclear data Examples of Uncertainties in Evaluation

References	²⁴⁴ Cm(n, f) 0.5-1.35 MeV	²³⁷ Np(n, γ) 0.5-1.35 MeV
J. NSE, 146, 13 2004 ANL	40 %	15 %
JENDL-3.3 2002 JAEA	7.7 %	3.4 %

Current status of nuclear data Examples of Experimental Uncertainties

How can we know the correct nuclear data ?

How can we deduce the appropriate uncertainties?

Measurement of Neutron-Capture Cross Section with 4π Ge detector at ANNRI

Ge spectrometer at L=21.5m **The 4πGe spectrometer** *Two Cluster Ge detectors with BGO anti-coincidence shields were used. *One to Eight coaxial Ge detectors can be installed.

The beam condition

- * 120 kW, 25 Hz, Double-Bunch
- * Notch filters: Mn, Co, In, Ag, Cd

