Deviations from the Statistical Model in Capture γ-ray and EC/β⁺-decay Data

Richard B. Firestone

Lawrence Berkeley Laboratory, Berkeley CA, USA

Outline

1. Beta decay statistical properties

- Gross theory of beta decay
- Total Absorption Spectrometer (TAS) studies
- Evidence of nuclear structure effects

2. Average resonance neutron capture

- Single particle M1, E2 strength
- M1+E2 mixing rations
- **3.** Hypothesis Allowed β -decay, M1 and E2 transitions are dominated by nuclear structure properties.

Caveat: This presentation is based on preliminary, unpublished work and the data analysis is still in progress

Total Absorption Spectroscopy (TAS)

TAS spectrometer measures γ -ray sum spectrum for each β -decay event

The β -strength function can be directly measured by TAS and compared with statistical models after correction for detector response.

TAS Spectrometers

First TAS Spectrometer*: 2-

10×13 cm Nal(Tl) detectors, 19% efficiency at 662 keV.

* R.S. Foote and H.W. Koch, Rev. Sci. Instr. **25**, 746 (1954).

Lucretia–Isolde: 38×38 cm Nal(TI) well detector, 63% photopeak efficiency at 1.33 MeV.

TAGS-INEL: 20×20 vm Nal(Tl) well detector, 99% efficiency at 200 keV.

TAGS-St. Petersburg:

 20×11 cm Nal(Tl) + 20×11 cm Nal(Tl) well detector. Si(Au) β -particle detector.

LBNL/GSI TAS Spectrometer

*J.M. Nitschke, Nuclear Instruments and Methods 206 (1983) 341-351.

LBNL TAS Measurements

Only one TAS measurement was performed at LBNL in 1990 before it moved to GSI. These unpublished results will be presented here.

- Collaborators: J.M. Nitschke*, P.A. Wilmarth[†], and R.B. Firestone
- **Reaction:** ²⁸Si(^{nat}Mo,xnyp) at LBNL SuperHILAC
- **Isotopes studied:** ¹¹⁷⁻¹²⁴Cs, ¹¹⁷⁻¹²¹Xe, and ¹²¹⁻¹²⁴Ba
- Measured: Complete I_B spectra, Q_{EC} values, and S_{B} and S_{γ} strengths
- **Tested:** Gross theory of β -decay

*Deceased (1995). [†]Oregon Health & Sciences University, School of Dentistry, Portland OR.

TAS Spectra for Even A Cs Isotopes*

Structure observed in these decay schemes is inconsistent with Gross Theory.

* Uncorrected for the TAS response function.

Odd-A Cs Isotopes

122Cs Excitation Energy (MeV)

Xe, Ba

Isotopes

 $^{121} \rm Xe$ (J $^{\rm s}=5/2\, *), t_{12}{=}40$ m, Q $_{\rm EC}{=}3814$

0

Q_{EC} Determination

 Q_{EC} can be determined by the endpoint of the γ -ray sum spectrum.

Ba, Cs, and Xe Q_{EC} Results

Isotope	AME	(Audi)	TAS
	ш		Q _{EC}
¹¹⁷ Cs(9/2 ⁺)	0	7740(60	$)_{7470(100)}$
¹¹⁷ Cs(3/2 ⁻)	150(80)		7470(100)
¹¹⁹ Cs(9/2 ⁺)	0	6489(17	
¹¹⁹ Cs(3/2 ⁺)	50(30)		0400(100)
$^{121}Cs(9/2^{+})$	0	5372(18	$)_{5200(100)}$
$^{121}Cs(3/2^+)$	68.5(3)		5300(100)
$^{123}Cs(1/2^+)$	0	4205(15) 4210(100)

Isotope	AME	TAS	
	Ш	G	EC
¹¹⁸ Cs(2)	0	9670(16)	9570(100)
¹¹⁸ Cs(7 ⁻)	100(60)		
$^{120}Cs(2^{-})$	0	8284(15)	8340(100)
¹²⁰ Cs(7 ⁻)	100(60)		
$^{122}Cs(1^+)$	0	7220(30)	7020(100)
$^{122}Cs(8^{-})$	140(30)		7190(100)
$^{124}Cs(1^+)$	0	5929(9)	5890(100)

lastana	Q _{EC} (keV)		
isotope	AME Audi	TAS	
¹¹⁷ Xe (5/2+)	6250(30)	6220(100)	
¹¹⁸ Xe (0+)	2892(22)	2880(100)	
¹¹⁹ Xe (5/2+)	4970(30)	4930(100)	
¹²⁰ Xe 0+	1617(21)	1610(100)	
¹²¹ Xe (5/2 ⁺)	3814(15)	3820(100)	
¹²¹ Ba(5/2+)	6360(140)	6160(100)	
¹²² Ba(0 ⁺)	3530(40)	3530(100)	
¹²³ Ba(5/2 ⁺)	5389(17)	5340(100)	
¹²⁴ Ba(0 ⁺)	2542(15)	2650(100)	

Absolute EC+β⁺ Feedings

TAS measures relative electron capture feedings. To get total EC+ β ⁺ feedings

$$I(EC + \beta^{+})_{i} = I(\gamma)_{i} (1 + \frac{f_{\beta^{+}}}{f_{EC}})$$

%(EC + \beta^{+})_{i} = 100 \times \Sigma_{i} I(EC + \beta^{+})_{i}

The spectrum should be corrected for the detector response function which is not known because the γ -ray spectrum is not known as a function of excitation energy.

Preliminary attempts to estimate this correction indicate that this only qualitatively affects the following results.

Cs Beta Strength

Beta Strength - Even A Cs

Beta Strength - Odd A Cs

The Cs beta strength declines exponentially above \approx 4.5 MeV. This is inconsistent with the statistical model of beta decay.

Nuclear Structure in the β -strength of the Cs isotopes

 $\pi g_{9/2} \rightarrow \nu g_{7/2}$ spin-flip transition

Cs isotopes have $\beta_2=0.2-0.3$ so this fast spin-flip β -decay transition is expected near ≈ 4 MeV.

Configuration mixing spreads the β -strength over a wide energy range.

Shell model effects appear to dominate these decays.

Figure 12. Nilsson diagram for protons, $50 \le Z \le 82$ ($\epsilon_4 = -\epsilon_2^2/6$).

β-strength near theN=82 closed shell

For the N=81 ¹⁴⁵Gd, ¹⁴⁷Dy,and ¹⁴⁹Er decays the shell model effects are even more pronounced dominated by the $\pi h_{11/2} \rightarrow \nu h_{9/2}$ transition.

γ-ray Strength Function

Average Resonance Capture ARC: A window to γ -ray strengths

ARC experiments look at primary γ -rays following neutron capture from a narrow resonance region containing many levels. Typical experiments at 2- and 24- keV are performed with filtered beams.

Favored/Unfavored B(E1,M1) 2-keV ARC

	Fav/UnFav B(E1)	Fav/UnFav B(M1)	J-1/2/J+1/2 B(E1)	J-1/2/J+1/2 B(M1)	J-3/2/J+3/2 B(E1)	J-3/2/J+3/2 B(M1)
¹⁰⁶ Pd	0.74	0.74	1.00	1.36	0.94	1.05
¹⁵⁶ Gd	0.55	0.67	0.82	0.71	1.19	
¹⁶² Dy	0.55	0.50	1.26	1.12	0.86	0.87
¹⁶⁴ Dy	1.06	0.89	1.10	1.25	1.91	
¹⁶⁸ Er	0.51	0.53	0.98	1.12	0.78	0.98
¹⁷⁴ Tb	0.55	1.30	1.21	1.08	1.33	4.32
¹⁹⁸ Au	0.50		1.13		0.93	0.66

Most examples are consistent with Unfavored/Favored ≈ 0.5 .

Most anomalies are seen in both the B(E1) and B(M1) ratios

Variation of B(E1,M1) with Final Level Excitation

Variation of B(M1,E2,E1) with S_N

Variation of total BM1, BE1 with S_N

Enhanced M1, E2 strength near 7.5 MeV?

B(E2) Strength

Variation of total BE2 with deformation

There is a general correlation of B(E2) strength with deformation.

Note that β_2 is a GS deformation

K-Dependence

¹⁶⁸Er K-Dependence of the Statistical Model

Comparison of experimental ¹⁶⁷Er(n, γ) thermal neutron capture feedings with DICEBOX calculations.

- Oscillations appear to be due to failure of spin distribution function
- Discrepancies correlated with band assignment

M1+E2 Mixing Ratios

	E _N (ARC) MeV	δ= E2/M1
¹⁰⁶ Pd	1	1.32
¹⁰⁶ Pd	2	2.24
¹⁵⁵ Gd	2	0.81
¹⁵⁶ Gd	1	0.74
¹⁵⁶ Gd	2	0.70
¹⁵⁷ gd	1	1.27
¹⁵⁹ Gd	2	1.75
¹⁶⁴ Dy	2	0.52
¹⁶⁸ Er	2	0.33
¹⁹⁸ Au	2	1.24
²³³ Th	0	1.39
²³³ Th	2	1.05
²³⁹ U	2	0.79

M1/E2 mixing rations can be estimated from the measured B(E2) values for pure E2 transitions.

 $\delta_{Ave} = 1.1$

- Probably high since only strongest E2 transitions seen
- Consistent with $\delta \approx 0.5$ -1 assumed by the nuclear data community

Conclusions

• Nuclear beta decay is dominated by nuclear structure and cannot be interpreted by statistical model calculations

- E1 primary photon transitions are strongly hindered and statistical in nature
- M1,E2 primary photon transitions can have strong single particle strengths distributed over broad energy excitations.
- E2 primary photon transitions retain significant collectivity
- M1 primary photon transitions have significant E2 admixtures

• Nuclear structure effects arising from M1, E2 transitions will be observed as deviations from statistical models in charged particle-gamma reaction experiments.