Nature of the Pygmy Dipole Resonance

Janis Endres

Institute for Nuclear Physics, University of Cologne

3rd Workshop on Level Density and Gamma Strength, 26.05.2011

Introduction

• The PDR in stable nuclei

- (γ, γ') experiments
- (α , α ' γ) experiments
- The PDR in unstable nuclei
- Conclusion and outlook

Collective dipole oscillations in small sodium clusters

•	Excitation of metal
	clusters with
	radiation ($E_x \sim 1 \text{ eV}$)

- Oscillation of electrons against ions
- Collective dipole resonance

W. A. de Heer *et al.*, Phys. Rev. Lett. **59** (1987) 1805

Electric dipole strength in an atomic nucleus

Pygmy Dipole Resonance Giant Dipole Resonance

Relevance of the Pygmy Dipole Resonance

- γ-ray strength function around the particle threshold
 H. K. Toft *et al.*, Phys. Rev. C 83 (2011) 044320
- Determination of neutron skin thickness (r_n-r_p)
 A. Klimkiewicz *et al.*, Phys. Rev. C **76** (2007) 051603(R)
- Equation of state of neutron rich matter J. Piekarewicz, Phys. Rev. C 73 (2006) 044325
- Information on neutron star properties from (r_n-r_p)
 C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86 (2001) 5647
- Influence on nucleosynthesis processes
 S. Goriely, Phys. Lett. B 436 (1998) 10
- Supernova explosion mechanism J. Piekarewicz, Phys. Rev. C 73 (2006) 044325

PDR strength in stable N=82 isotones

- Real photon scattering
- Using HPGe detectors
- Strong fragmentation
- Concentration around
 5.5 7.0 MeV
- 1% of EWSR
- Scaling with N/Z
- A. Zilges *et al.*, Phys. Lett. B **542** (2002) 43
 S. Volz *et al.*, Nucl. Phys. **A779** (2006) 1
 D. Savran *et al.*, Phys. Rev. Lett. **100** (2008) 232501

Experiments on the PDR using the (γ, γ') method

S-DALINAC (TU Darmstadt)

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF ELBE (Helmholtz Zentrum Dresden-Rossendorf)

HIγS (Duke University, USA)

Former bremsstrahlung facility in Gent

 A<60: ²⁶Mg, ^{40,44,48}Ca, ⁴⁸Ti, ⁵²Cr, ⁵⁶Fe, ⁵⁸Ni

 A<100: ^{70,72,74,76}Ge, ⁸⁸Sr, ⁸⁹Y, ⁹⁰Zr, ^{92,94,96,98,100}Mo

 A>100: ^{112,116,120,124}Sn, ¹³⁶Xe, ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd, ¹⁴⁴Sm, ^{204,206,207,208}Pb

α scattering versus real photon scattering

	(α,α') *	(γ,γ')
Interaction	Strong	Electromagnetic
Location of interaction	Surface	Whole nucleus
Isospin	Isoscalar	Isovectorial E1 excitation
Multipolarity	E0, E1, E2, E3,	E1, M1, (E2)
Energy resolution (at $E_x = 8 \text{ MeV}$)	30-100 keV (straggling)	7-10 keV

* 130 MeV (intermediate energies) and scattering at forward angles

\Rightarrow New structure information

 \Rightarrow Essential for spectroscopy of the PDR

\Rightarrow (α , α ' γ) coincidence experiments!

Setup at KVI

D. Savran et al., Nucl. Inst. and Meth. Phys. Res. A 564 (2006) 267

J. Endres, IKP, Universität zu Köln, AG Zilges

Structure of the Pygmy Dipole Resonance

Big-Bite Spektrometer

¹²⁴Sn: 2d coincidence matrix

¹²⁴Sn($\alpha, \alpha' \gamma$) - selectivity

Comparison of $(\alpha, \alpha' \gamma)$ with (γ, γ') for ¹²⁴Sn

E1 strength distribution in ¹⁴⁰Ce, ¹³⁸Ba, ¹²⁴Sn, and ⁹⁴Mo

J. Endres, IKP, Universität zu Köln, AG Zilges

Structure of the Pygmy Dipole Resonance

Theoretical approaches

- QPM (Quasiparticle-Phonon Model) N. Tsoneva and H. Lenske, Phys. Rev. **C** 77 (2008) 024321
- RQRPA (Relativistic Quasiparticle Random Phase Appr.) N. Paar *et al.*, Rep. Prog. Phys. **70** (2007) 691
- RQTBA (Relativistic Quasiparticle Time Blocking Appr.) E. Litvinova, P. Ring, and V. Tselyaev, Phys. Rev. C 78 (2008) 014312

- QPM allows quantitative description of PDR
 Summed strength, location, fragmentation
 D. Savran *et al.*, Phys. Rev. Lett. **100** (2008) 232501
- RQTBA allows interpretation of the PDR splitting J. Endres, E. Litvinova *et al.*, Phys. Rev. Lett. **105** (2010) 212503

QPM and RQTBA calculations for ¹²⁴Sn

Comparison of experiment and theory

Transition densities in RQTBA

Radial integrals of transition densities for RQTBA states

J. Endres, E.Litvinova et al., Phys. Rev. Lett. 105 (2010) 212503

J. Endres, IKP, Universität zu Köln, AG Zilges Structure of the Pygmy Dipole Resonance

PDR in stable nuclei using (γ, γ') and $(\alpha, \alpha' \gamma)$

- Advantages of (γ, γ') and $(\alpha, \alpha' \gamma)$ experiments:
 - High energy resolution
 - High selectivity to E1 transitions
 - Analysis of single states feasible
 - Structure of the PDR is accessible
- Limitations:
 - Only stable isotopes
 - E1 strength *below* the particle threshold

PDR in unstable nuclei using exotic-beam facilities

- Production of radioactive beam
 e.g. in-flight fission of heavy primary beam
- Selection of nuclei with fragment separator
- Coulomb excitation of selected nuclei
 e.g. using a ²⁰⁸Pb target
- Detection system e.g. (Super)FRS-(Neu)LAND setup at GSI/FAIR \rightarrow Excitation energy determined by a kinematically complete measurement $b > R_p + R_T \longrightarrow Pb$ $b > R_p + R_T \longrightarrow Pb$ complete measurement $\sigma_{elm} \sim Z^2$

High resolution γ -spectroscopy at the FRS at GSI

⁶⁸Ni analysis of experiment at GSI (RISING-Setup)

- PDR in ⁶⁸Ni around 11 MeV
- Exhausts ~5% of EWSR
- Neutron skin thickness:
 0.200(15) fm

O. Wieland and A. Bracco, Prog. Part. Nucl. Phys. 66 (2011) 374

- Asymmetry dependence is still an open question
- Further investigations in the near future NuPECC Long Range Plan 2010

Conclusion and outlook

- PDR is an important topic in nuclear structure and nuclear astrophysics
- (γ, γ') and $(\alpha, \alpha' \gamma)$ experiments:
 - High selectivity to single transitions
 - Details of the structure of the PDR below S_n
 - Splitting of the PDR
 - Next step: investigation of light nuclei
- Radioactive beams:
 - PDR in Sn isotopes and ⁶⁸Ni <u>above Sn</u>
 - Next step: Systematic studies

 PDR influences the γ-ray strength function around the particle threshold

H. K. Toft *et al.*, Phys. Rev. C **83** (2011) 044320

Collaboration

V. Derya, M. Elvers, and A. Zilges University of Cologne

D. Savran ExtreMe Matter Institute EMMI and Research Division, GSI

> E. Litvinova GSI, Darmstadt

M.N. Harakeh, V.I. Stoica, and H.J. Wörtche University of Groningen

- P. Butler and R.-D. Herzberg University of Liverpool
- S. Harissopulos and A. Lagoyannis I.N.P. NSCR Demokritos, Athens
 - R. Krücken and P. Ring Technical University Munich

N. Pietralla, V.Yu. Ponomarev, and M. Scheck Technical University Darmstadt

> L. Popescu SCK-CEN, Mol

K. Sonnabend Goethe-University Frankfurt

J. Endres, IKP, Universität zu Köln, AG Zilges

Structure of the Pygmy Dipole Resonance

Experimental method: LAND setup @GSI

T. Blaich et al., Nucl. Inst. and Meth. Phys. Res. A 314 (1992) 136

Results: even neutron rich Sn isotopes

- PDR around 10 MeV
- PDR exhausts 7(3)% for ¹³⁰Sn and 4(3)% for ¹³²Sn of the TRK EWSR above the one-neutron separation energy
- Neutron skin thickness: 0.23(4) fm for ¹³⁰Sn, 0.24(4) fm for ¹³²Sn A. Klimkiewicz *et al.*, Phys. Rev. C **76** (2007) 051603(R)

P. Adrich et al., Phys. Rev. Lett. 95 (2005) 132501

Ratio of Coulomb excitation

Integrated B(E1) strength

D. Savran et al., PRL 100 (2008) 232501

J. Endres, IKP, Universität zu Köln, AG Zilges

Structure of the Pygmy Dipole Resonance

B(E1) strength distribution in ¹³⁶Xe

D. Savran et al., PRL 100 (2008) 232501

J. Endres, IKP, Universität zu Köln, AG Zilges Sti

E1 strength distribution in ⁴⁸Ca

Multipole assignment with $\alpha - \gamma$ angular correlation

J. Endres, IKP, Universität zu Köln, AG Zilges Structure of the Pygmy Dipole Resonance

Multipole assignment with $\alpha - \gamma$ angular correlation

Photoabsorption cross section of sodium clusters

