

Nuclear Diagnostics at the National Ignition Facility

Presentation to

Third Workshop on Nuclear Level Density and Gamma Strength Univeristy of Oslo, May 23, 2011

Darren Bleuel

(et. a lot of al.)

Lawrence Livermore National Laboratory • National Ignition Facility & Photon Science This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

NIF is the culmination of a long line of glass laser systems developed at LLNL

NIF concentrates all 192 laser beam energy in a football stadium-sized facility into a mm³

Matter Temperature >10⁸ K Radiation Temperature >3.5 x 10⁶ K Densities >10³ g/cm³ Pressures >10¹¹ atm

Target Chamber June 1999

22EIM/bc + NIF-0609-16535a1

...In the target chamber

How NIF/ICF Works

"Layered-cryo" w/ hohlraum (indirect drive) vs. "Exploding pusher" (direct drive)

"Layered-Cryo"

- Laser energy produces ~300 eV x-rays in hohlraum "can," heating CH or Be capsule wall
- Cryogenic DT
 "layered" fuel shell
 with gas interior
- "Hot spot" ignites
 high ρR layer burn
- Yield up to 10¹⁹ n

Cryogenic, x-ray driven, layered targets

Lofty goal of the National Ignition Campaign (NIC): "

Pitfalls to achieving ignition

Neutron Spectra Diagnostics must span 9 orders of magnitude

NIF

All neutrons born within <100 ps.

Activation: Zr Neutron activation (NAD) measures yield for DT shots to absolute accuracy of \pm 7%

NIF <u>MRS:</u> The MRS has been designed and implemented for simultaneous measurements of ρR , Y_{1n} and T_{ion} **MRS Spectrum THD-3 Med-Res** Low-Res 10⁴ N11020 $t_{\rm f}$ = 125 µm $t_f = 275 \ \mu m$ **Primaries Yield** 10 $A_a = 20 \text{ cm}^2$ Me< n DS-n d+ Counts / Magnet 10² **Deconvolved** TT-n width = T_{ion} R_{f} = 26 cm 10 **Downscatter from 10-12MeV** neutrons *R_a* = 570 cm 10⁰ 10 15 0 5 Deuteron energy [MeV] **CR-39** Accuracy requirement for the MRS absolute yield measurement < 10% for Y_{1n} > 10¹⁴

<u>GRH:</u> Gamma Reaction History (GRH) measures Bang Time (w/in 30 ps) and Burn Width (w/in 15 ps) with Gas Cherenkov Detectors

- Bangtime agrees with Ntof_BT data to within 100 ps
- Energy threshold of each cell set by gas pressure /composition
- 3-10MeV GRH will be fielded on DT implosions for yield and 4.4MeV carbon γ (ablator density measurement)

NIF-0211-20965.ppt

<u>nToF</u>: lon temperatures, yields, and ρR from ~6 nToF detectors are calculated by an iterative process

Neutron Imaging system has begun performance qualification process using exploding pusher shots

First radiochemistry (RAGS) diagnostic utilizes 124 Xe(n, γ) and 124 Xe(n,2n) to measure average ρR

NIF

Sandia National Laboratories

Where we are now and where we're going

- Primary purpose of these first two diagnostics phases are to achieve ignition
- We are now (≈3 weeks ago) beginning to think about science-enabling diagnostics, including:
 - 1. Solid-debris collection (fast and slow)
 - 2. Energy resolving γ -ray detectors (bent crystal)
 - Fission-based low-energy neutron spectrometers (Supplements what Lee talked about)

...

Coming up with an idea for a new diagnostic is a great way to get involved

Nuclear Physics AT NIF (thanks Lee!) Nuclear Physics FOR NIF

- D-T fusion 16.7 MeV γ-ray branching ratio
- T-T neutron spectrum (⁶He breakup)
 - Sequential, di-neutron, or two-body?
- Nuclear-plasma interactions/rates/thermal population
 NEEC, NEET, etc.
- Reactions on highly-excited states
- Cross sections: (n,x) for radchem

NIF is providing opportunities to explore new areas of nuclear physics

Nuclear physics needs

T-T neutron spectrum at NIF-relevant energies (~10keV)

Thanks...

- Lee Bernstein (LLNL)
- Jac Caggiano (LLNL)
- Dan Casey (MIT)
- Johan Frenje (MIT)
- Stephan Friedrich (LLNL)
- Vladimir Glebov (LLE)
- Hans Hermann (LANL)
- Joe Kilkenny (General Atomics)
- Andy MacKinnon (LLNL)
- Craig Sangster (LLE)
- Dieter Schneider (LLNL)
- Dawn Shaughnessy (LLNL)
- Wolfgang Stoeffl (LLNL)
- lots and lots of others...

Nuclear Cross Sections for Charged Particles at Energies Relevant to Astrophysics are Difficult to Measure

By measuring reaction products at NIF the relevant cross sections are inferred

The achievement of ignition will provide unique research opportunities in astrophysics, stewardship physics, and inertial fusion energy studies

M. Junker et al., PRC 57, 2700 (1998)

• Strongly screened reactions are relevant to stellar evolution

- First hit gives excited nuclear state
- Reactions from excited states, relevant to r-process nucleosynthesis of heavy elements
- Second hit reaction cross section uncertain
 - S. Libby, IFSA proceedings (2004)