Complex nuclear spectra in a new Large Scale Shell Model Approach

Davide Bianco

In coll.with : N. Lo Iudice, F. Andreozzi, A. Porrino, F. Knapp.

Oslo 2011

Summary

- Nuclear Shell Model
- Diagonalization methods
- A new Iterative diagonalization algorithm (APL)
- Importance sampling algorithm
- Applications to ¹³⁴⁻¹³⁰Xe

Nuclear Shell Model

- Since N very large
- Standard diagonalization methods very lengthy: $t \propto N^3$
- However,

1. only $n \sim 1$ eigenstates of a given J needed

2.
$$\left\{ \mathbf{H}_{ij} \neq 0 \right\} \propto \mathbf{N}$$

Diagonalization algorithms identifying the $H_{ij} \neq 0$ needed

Two alternative methods

- -Direct diagonalization: Lanczos
- Numerical Implementation: Antoine
- E. Caurier et al. Rev. Mod. Phys. 77, 427 (2005) for review
- -Stochastic methods: SM Montecarlo (SMMC) S. E. Koonin, D.J. Dean, and K.Langanke, Phys. Repts. 278, 2 (1997)
- Suitable for ground state and strength functions.
- **MINUS** sign problem

In between: Truncation methods

Quantum Montecarlo diagonalization (QMCD) (T. Otsuka et al., Prog. Part. Nucl Phys. 46, 319 (2001) for a review) **Samples** the **relevant** basis states **stochastically**

Problems: Redundancy, symmetries broken by the stochastic procedure.

DensityMatrixRenormalizationGroup J. Dukelsky and S. Pittel, Rep. Prog. Phys. 67, 513 (2004)

borrowed from condensed matter S. R. White PRL 69, 2863 (1992)

Diagonalization algorithm

F. Andreozzi, A. Porrino, and N. Lo Iudice, J. Phys. A 35, L61 (2002) F. Andreozzi, N. Lo Iudice, A. Porrino, J. P. G 29, 2319 (2003)

Iterative generation of an eigenspace

 A → Symmetric matrix representing a selfadjoint operator in an orthonormal basis
 { | 1 > , | 2 > , ..., | N> }

• A \rightarrow { a_{ij} } = { < i | $\hat{A} | j >$ }

• Lowest eigenvalue and eigenvector

$\begin{array}{c} a_{11} \ a_{12} \ a_{13} \ a_{14} \\ a_{21} \ a_{22} \ a_{23} \ a_{24} \\ a_{31} \ a_{32} \ a_{33} \ a_{34} \end{array}$		a_{1N} a_{2N} a_{3N}
$a_{41} a_{42} a_{43} a_{44}$	••••	a _{4N}
a _{N1}		a _{NN}

Update $\mathbf{b}_3 = \langle \mathbf{\phi}_2 | \hat{\mathbf{A}} | 3 \rangle$

Update $b_N = \langle \phi_{N-1} | \hat{A} | N \rangle$

End first iteration loop

Second iteration

Def.
$$|\phi_1^{(2)}\rangle = |\psi^{(1)}\rangle \quad \lambda_1^{(2)} = E^{(1)}$$

{ $| \phi_1^{(2)} >$, | 1 > } are not linearly independent

Generalized eigenvalue problem

$$\mathcal{D}et \left(\begin{bmatrix} \lambda_{1}^{(2)} b_{1} \\ b_{1} & a_{11} \end{bmatrix} - \lambda \begin{bmatrix} 1 & <\phi_{1}^{(2)} | 1 > \\ <\phi_{1}^{(2)} | 1 > & 1 \end{bmatrix} \right) = 0$$

$$E^{(1)}, \Psi^{(1)} \longrightarrow E^{(2)}, \Psi^{(2)} \longrightarrow \cdots$$

THEOREM

If the sequence $E^{(i)}$ converges , then

 $E^{(i)} \longrightarrow E$ (eigenvalue of the matrix A)

 $\Psi^{(i)} \longrightarrow \Psi$ (eigenvector of the matrix A)

Simultaneous determination of v eigensolutions

The structure of the algorithm unchanged

Properties of the Algorithm

- Easy implementation
- Variational foundation
- Robust

Convergence to the extremal eigenvalues Numerically stable and ghost-free solutions Orthogonality of the computed eigenvectors

- Fast : **O(N²)** operations
- O(N) operations when the sparsity of H is exploited

Implementation: Space Decomposition

1.
$$M_0 \longrightarrow \Lambda_0(v) \equiv \{(E_1^{(0)} \psi_1^{(0)}) \dots (E_v^{(0)}, \psi_v^{(0)})\}$$

$$\Lambda_{0}(\mathbf{v}) \oplus \mathbf{M}_{1}$$

$$\downarrow$$

$$\Lambda_{1}(\mathbf{v}) \equiv \{ (\mathbf{E}_{1}^{(1)} \psi_{1}^{(1)}) \dots (\mathbf{E}_{v}^{(1)}, \psi_{v}^{(1)}) \}$$

2.

Sampling Procedure

$$\epsilon_1 > \epsilon_2 > \ldots > \epsilon_{p-1} > \epsilon_p$$

accepted only the |j> states fulfilling

$$| \langle \Psi_{k}^{(i-1)} | H | j \rangle |^{2} / (a_{jj} - E_{k}^{(i-1)}) \rangle \epsilon_{i}$$

for each M_{i} subspace

 N^0 of operations $\propto N_{sampled}$

Numerical Applications: ¹³⁴⁻¹³⁰Xe

• **Experimentally** Xe isotopes extensively studied

- T. Ahn et al. Phys.Lett. B 679 (2009) 19–24
- L. Coquard et al. PRC **82**, 024317 (2010)
- L. Bettermann et al. PRC **79**, 034315 (2009)
- H. von Garrel et al. PRC **73**, 054315 (2006)

An important issue:

Mixed Symmetry States (MSS)

- Theoreticaly only ¹³⁴Xe investigated
- N. Lo Iudice, Ch. Stoyanov, D. Tarpanov PRC 77, 044310 (2008)
- K. Sieja et al. PRC **80**, 054311 (2009)
- Studying ¹³²Xe and ¹³⁰Xe is a challenge

Proton-Neutron Symmetry

Symmetric States $|n, v\rangle_s = Q_S^n |0\rangle = (Q_p + Q_n)^n |0\rangle$ Signature: $\mathcal{M}(E2) \propto Q_S \quad (\Delta n=1))$

> n=3 n=2 _

E2

symmetry preserving (∆F=0)

MS States $|n, v\rangle_{MS} = (Q_p - Q_n)(Q_p + Q_n)^{(n-1)} |0\rangle$ **Signature** $\mathcal{M}(M1) \propto J_n - J_p \quad (\Delta n=0)$ symmetry changing $(\Delta F=1)$ n=2**M1** n=2MS

Numerical Applications: ¹³⁴⁻¹³⁰Xe

- Model space: 0-hω N=4 major shell
- $\mathbf{M} = \{0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2\}$
- S.p. basis: Nilsson
- **Two-body Potential**
- G-matrix derived from CD-Bonn potential

Convergence properties: Energies

Convergence properties: Energies

Convergence properties: B(E2)

 134 Xe

SM

2⁺ ----- 0.87 2⁺ ----- 0.85

0⁺ ----- 0.0 0⁺ ----- 0.0

spectra

SM

Exp.

 $0^+ - 0.0 \qquad 0^+ - 0.0$

2⁺ ----- 0.47 2⁺ ----- 0.54

0⁺ ----- 0.0 0⁺ ----- 0.0

E2 Transitions

M1 Transitions

 134 Xe

 \mathbf{SM}

Exp.

Summary of the Xe results

- In both ^{134,132}Xe we get
- the first 2^+_1 is one-boson p-n symmetric
- --The second 2⁺₂ is two-boson symmetric
- In ¹³⁴Xe
- the third 2_3^+ is one-boson p-n MS
- In ¹³²Xe
- the p-n **MS not obvious** since: B(M1) shared by two-three 2+ states

NB: the IBM p-n symmetry is not a SM Symmetry

Summary

- The new algorithm allow us to perform large scale shell model calculations
- The convergence properties of the algorithm and the important sampling induce an effective truncation of the space
- Future developments: Parallel code?
- Even now, it can be usefully implemented to study complex spectroscopy

Thank you