Nature of the Pygmy Dipole Resonance

J. Endres¹, E. Litvinova^{2,3}, D. Savran^{4,5,10}, P. Butler⁶, M.N. Harakeh^{2,7}, S. Harissopulos⁸, R.-D. Herzberg⁶, R. Krücken⁹, A. Lagoyannis⁸, N. Pietralla¹⁰, V.Yu. Ponomarev¹⁰, L. Popescu¹¹, P. Ring⁹, M. Scheck¹⁰, K. Sonnabend^{10,12}, V.I. Stoica⁷, H. Wörtche^{7,13}, and A. Zilges¹

¹Institut für Kernphysik, Universität zu Köln, Germany

²GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

³Institut für Theoretische Physik, Goethe-Universität Frankfurt, Germany

⁴ExtreMe Matter Institut EMMI and Research Division, GSI Helmholtzzentrum, Darmstadt, Germany

⁵Frankfurt Institut for Advanced Studies FIAS, Frankfurt, Germany

⁶Oliver Lodge Laboratory, University of Liverpool, United Kingdom

⁷*Kernfysisch Versneller Instituut, University of Groningen, The Netherlands*

⁸Institute of Nuclear Physics, N.C.S.R. Demokritos Athens, Greece

⁹Physik Department, TU München, Germany

¹⁰Institut für Kernphysik, TU Darmstadt, Germany

¹¹Belgian Nuclear Research Centre SCK*CEN, Mol, Belgium

¹²Institut für Angewandte Physik, Goethe-Universität Frankfurt, Germany

¹³INCAS³, Assen, The Netherlands

In recent years investigations have been made to study the electric Pygmy Dipole Resonance (PDR) systematically, mainly in semi-magic nuclei. For this purpose the well understood high resolution (γ, γ') photon scattering method is used [1]. In complementary $(\alpha, \alpha' \gamma)$ coincidence experiments at $E_{\alpha} = 136$ MeV a similar energy resolution and a high selectivity to E1 transitions can be obtained at the Big-Bite Spectrometer (BBS) at KVI, Groningen. In comparison to the (γ, γ') method a structural splitting of the PDR could be observed in the N=82 nuclei ¹³⁸Ba and ¹⁴⁰Ce and in the Z=50 isotope ¹²⁴Sn [2,3,4]. There seems to be an energetically low-lying group of $J^{\pi} = 1^{-}$ states wich could be excited in the α -scattering experiments as well as in (γ, γ') . In addition, a high energy part is only observed in (γ, γ') . The experimental results and theoretical QPM and RQTBA calculations on ¹²⁴Sn will be presented. The low-lying group of $J^{\pi} = 1^{-}$ states seem to represent the more isoscalar neutron-skin oscillation of the PDR while the energetically higher-lying states seemingly belong to the tail of the isovector Giant Dipole Resonance (GDR). This work is supported by the DFG (ZI 510/4-1 and SFB 634), by the LOEWE program of the State of Hesse (HIC for FAIR), the DFG cluster of excellence Origin and Structure of the Universe, and by the EU under EURONS Contract

[1] D. Savran et al., Phys. Rev. Lett. 100, 232501 (2008).

[2] D. Savran et al., Phys. Rev. Lett. 97, 172502 (2006).

[3] J. Endres et al., Phys. Rev. C 80, 034302 (2009).

No. RII3-CT-2005-506065.

[4] J. Endres et al., Phys. Rev. Lett. 105, 212503 (2010).