Concluding remarks & suggestions

Teng Lek Khoo Argonne National Laboratory

3rd Workshop on Level Density and Gamma Strength

5/31/2011 T. L. Khoo, 3rd W'shop on Level Density and Gamma Strength

Characteristics of meeting

- Focused
- Wide-open, stimulating and lively discussions.
- Civil discussion between those who disagree.
- Even the opposition invited.
- Very interesting workshop.
- On important physics.
- Delightful social organization.
- Thanks to organizers

Local organizing committee:

- <u>Sunniva Siem</u> (chairman)
- Alexander Bürger
- Tomas K. Eriksen
- Andreas Görgen
- Magne Guttormsen
- Trine W. Hagen
- Ann-Cecilie Larsen
- Hilde Therese Nyhus
- John Rekstad
- Therese Renstrøm
- Sunniva J. Rose
- Heidi K. Toft

- ρ & S_γ are fundamental nuclear properties.
- Why are they not better defined after so many years of nuclear physics?
- What would it take to properly define them?
- Role of theory. Impressive progress on ρ , less so on S_v .
- Keeps you all gainfully employed.

Exclusive measurements

- Exclusive measurements are necessary to ensure that particles/gammas are indeed from the putative source, with no contributions from, e.g., hydrocarbons which inevitably build up on target.
- Requirement/check on E_{Σ} or E_{max} effective. Sufficient? Nevertheless it's a minimum requirement when it is possible to impose.

Enhanced S_{γ} at low E $_{\gamma}$ – all E1? Is there an M1 contribution?

• Suggestion

- Variation of Wiedeking ratio method with $\pi_{initial}$ specified, e.g. in (n, γ) with s-wave capture $\pi_i = +$.
- 2-step γ cascade to ground state.
- $\pi_{\text{intermediate}} = E1/E1; \pi_{\text{intermediate}} = + M1/M1.$
- $R = I(E\gamma_1)/I(E\gamma_2) = S(E\gamma_1)/S(E\gamma_2).$
- N.B. R gives direct information on S(Eγ); P does not enter.

ρ, S_γ & γ spectra feeding ground & high-K states

- Are the above different?
- p probably smaller due to limited configurations that can contribute.
- Any theoretical grounds for expecting S_{γ} to be different? Not if Brink hypothesis holds.
- Test of Brink hypothesis.
- Tail of GDR built on high-K states.
- If γ spectra different → K conservation above yrast line.
- How does the K quantum number damp with U?
- Order to chaos transition.

T. L. Khoo, 3rd W'shop on Level Density and Gamma Strength

Suggestion: 3 ways for measuring ρ, S_γ in one expt. Cross check & test of methods. Measure protons & γ with Gammasphere → high resolution, straightforward unfolding, calorimetry.

- (a) protons from reaction, e.g. ${}^{12}C({}^{45}Sc,p){}^{56}Fe$ or ${}^{12}C({}^{51}V,p){}^{62}Ni$ (Voinov) $\rightarrow \rho$.
- (b) γ 's with the Oslo method after specifying E* with $E_p \rightarrow \rho \& S(E\gamma)$. Possible reactions
- ¹²C(⁵¹V,p)⁶²Ni Q = 7.26 MeV
- ¹²C(⁴⁵Sc,p)⁵⁶Fe Q = 12.25 MeV

(c) Spin distribution.

(d) 2- step γ 's for $R = I(E_{\gamma 1})/I(E_{\gamma 2}) = S(E_{\gamma 1})/S(E_{\gamma 2})$. 5/31/2011 T. L. Khoo, 3rd W'shop on Level Density and Gamma Strength

45Sc(12C,p)56Fe reaction at E(12C)=25 MeV calculated with Hauser-Feshbach model. Courtesy A. Voinov.

S_p = 10.2 MeV, S_n =11.2 MeV.

Superheavy nuclei are *at the limits of Coulomb stability*; would fission instantaneously, but

shell-correction energy lowers the ground state, thereby creating a *barrier against fission*.

How does the shell-energy of superheavy nuclei damp with U?

- ρ in trans-actinides, e.g. with ²⁴⁴Pu, ²⁴⁶Cm, ²⁴⁹Cf targets.
- Damping of shell-correction at high E^{*}→ change of ρ.
- Test Ignatyuk damping parameter γ.
- $a = a_0\{1 + \delta E^*[1 \exp(-\gamma E)]/E\}$
- Is γ the same for all nuclei?
- Common assumption is yes, but probably incorrect. Recent calculations based on density functional theory says "no".
- Needs data to test.

(n,γ) in n-rich nuclei, e.g. ^{132,133}Sn, via surrogate reactions with RIBs

- S_n low, <~4 MeV, few bound states.
- Is decay statistical? Yes for initial state above S_n, but to finite number states.
- P?
- S_γ?
- No data
- Important for r-process.

Speculation on why hot nuclei become spherical after pair damping

- Heretic view: pairing helps drive nucleus towards deformation.
- Pair gap clearly evident in deformed nuclei, indicating pair condensate.
- In spherical nuclei, no pair gap; shell energy from single-particle gaps more important.
- Check Epair correlation.
- Hence, loss of pairing \rightarrow loss of deformation.

Quasicontinuous strength in Pygmy Dipole Resonance

- Large; what fraction of sum rule?
- Not described by theory?

- Summary of trends in Workshop
- A few topics, then pose a set of **questions** of different topics & invite responses.
- $\rho \& S_{\gamma}$ are fundamental nuclear properties. Why are they not better defined after so many years of nuclear physics? What would it take to properly define them?
- B_f²⁵⁴No
- Examples of some experiments from CARIBU.
- N capture surrogate reaction in n-rich nuclei via surrogate reactions, e.g. (d,p)
- $S_n \sim 4$ MeV; different S_{γ} , ρ ? Resonances, direct reactions more prevalent?
- 2-photon sum: S_{γ} , ρ spectrscopy
- EXILL Exogam@ILL opportunities