

Quasi-continuum: Lifetimes and feeding to discrete states

Mathis Wiedeking STARS-LIBERACE collaboration

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and under Contract DE-AC52-07NA27344.

- i. Motivation.
- ii. What experimental equipment do we have?
- iii. How can we utilize our setup to study regions of high level densities?
- iv. ²³⁸U test experiment.
- v. Feeding studies in Mo isotopes using normal kinematics.
- vi. Lifetime measurements in the quasi-continuum using inverse kinematics.
- vii. Summary.

Motivation

• LLNL's NIF photon flux (~10³⁷ photons/cm²/s) comparable to core-collapse supernovae environment where astrophysical processes take place.

Interior of the NIF target chamber, (30 ft in diameter)

Hubble space telescope image of core-collapse Supernova 1987A, in the Large Magellanic Cloud.

- Photon capture rates in plasma environments may be faster than γ-ray decay of quasi-continuum states → implications for astrophysical processes. See Lee's talk.
- Nuclear level density increases as excitation energy increases \rightarrow quasi-continuum.
- Not possible to study energy levels individually.
- Average quantities e.g. entropy and γ-ray strength functions describe nuclear properties → Oslo group.
- Developing experimental program to measure lifetimes and characterization of feeding to discrete states

88" Cyclotron at LBNL

LLNL experiments done in Cave 4C → move equipment to Cave 2 this year.

STARS-LIBERACE

Collaboration between Livermore National Laboratory and Berkeley National Laboratory.

Experimental Approach

Use direct reactions to populate states with high excitation energy away from yrast line rather than fusion-evaporation which follows along the yrast line.

Charged particles will be used to specify entrance excitation energy into the system and γ -rays in coincidence are studied e.g feeding, lifetime.

Feeding measurement

- Characterize feeding from continuum.
- Gate on particle energy to establish excitation energy E_x .
- Particle energies are binned and feeding to discrete transitions is analyzed.
- Gate on discrete gamma-ray energy E_g^{dis}
- In p- γ - γ sum of energies $E_g^{qc}=E_x^{-}E_g^{dis}$ +/- ρ_{det}^{-} is direct feeding.

• Repeat for different E_x (particle gates) and study feeding.

If excitation energy of discrete states is similar \rightarrow non-direct feeding same?

Change entrance energy and spin of state (well known) and study dependence of feeding.

Lifetime measurement

- Particle energies are binned and discrete transitions in coincidence are analyzed.
- Measure Lifetimes from observed Doppler shifts .

- Lifetimes of discrete states are partly dependent on direct and indirect feeding of γ -transitions from levels in the quasi-continuum (need feeding information).
- Differences in the shift in discrete transitions using different particle gates should provide information on the average lifetimes of the gated quasi-continuum region.

Test: ²³⁸U(¹⁶O, ¹⁶O*)²³⁸U* LLNL-PRES 412876

 238 U target was chosen because of its favorable level structure and longest lifetimes at S_n. 1060 keV 2⁺ state with a mean lifetime of 0.92 ps seems like a good candidate.

- Inelastic scattering ²³⁸U(¹⁶O,¹⁶O*)²³⁸U at 250 MeV incident on a 1.1 mg/cm² thick ²³⁸U target with 2 mg/cm² Al backing.
- Clover detectors: 140°(2), 90°(2), 40°(1).
- Telescope consisted of a 500 μm ΔE detector and 1000 μm E detector.
- Particle identification can cleanly extracts
 ²³⁸U γ transitions.

• No Doppler shifted components are observed in either transition.

DSAM Model

The expected Doppler shifted and stopped components for γ-rays emitted from 1060 keV level. Maximum recoil velocity following the reaction along the beam direction.

• Kinetic energy of the ²³⁸U nuclei varies greatly and drops off quickly with ¹⁶O detection angle. Immediately after the reaction β =0.0093 at 45°, β =0.0043 at 20°.

- Most statistics in the first few degrees of ¹⁶O detection where recoil is lowest.
- Most decays occur towards the middle and end of the slowing down process, leaving very little recoil velocity.
- To extract a Doppler shift need much more statistics to gate on large angles.

Lessons learned

• This work has shown that particle identification can cleanly extracts 238 U γ transitions.

• Higher recoil velocities are necessary to obtain well separated stopped and moving components.

• It is highly desirable to perform high statistics experiment to utilize particle- γ - γ coincidence gates \rightarrow provides unique signals for each transition of interest without possible interference from other decays.

• Lets start with easy beam and target and high cross section reactions to study the feeding from quasi-continuum into discrete states.

• Populate nuclei previously studied by the Oslo group to have a reference point.

• Once feeding is characterized do lifetime measurement.

New Approach

- Measurements are all based on detecting particle to infer the entrance energy.
- Choose Mo isotopes and it has been studied by Oslo:
- Two particle telescopes located up- and downstream.
- Populate Mo nuclei in the transfer reaction Mo(d,p) at 11 MeV beam energy to populate states around S_n with high statistics.
- \bullet High resolution $\gamma\text{-ray}$ spectra to study feeding to discrete states.
- The inverse kinematic reaction d(Mo,p) will provide large Doppler shifts.
- Lifetimes longer than ~500 fs use the DSAM.
- Lifetimes shorter than ~500 fs will use the CSM.
- Find states with lifetimes of less than 100 fs to be sensitive to changes in lower fs feeding region.

R. Chankova et al., Phys. Rev. C 73, 034311

Experiment: April 2009

- Establish feeding pattern in normal kinematic reactions: Mo(d,p) at 11 MeV.
- Have thin targets $^{92,93,94}Mo$ ~200-400 $\mu g/cm^2 \rightarrow$ high resolution spectra.
- Use 6 Clovers: 2 each at 140, 90, and 40 degrees.

• Gamma energy range 0-8 MeV for efficiency in high energy region use ${}^{12}C(d,p)$ with 3.7 and 3.9 MeV and ${}^{13}C(d,p)$ with 6.1 and 6.6 MeV.

LLNL-PRES 412876

⁹³Mo: proton gated γ-rays ^{LLNL-PRES} 412876

⁹²Mo(d,p)⁹³Mo

For C and D the region of high level density is being populated.

Gating on E_x and a discrete transition the gamma-rays at an energy $E_g^{\ qc} = E_x - E_g^{\ dis} + / - \rho_{det}$ are not due to Compton scattering but are due to one step cascades.

Very preliminary

⁹³Mo: y gated protons

LLNL-PRES ⁹⁵Mo: p-γ-γ coincidences

412876

Summary and outlook

- Use **STARS-LIBERACE** setup to study regions of high-level densities.
- Of particular interests are lifetime measurements in the quasi-continuum and the characterization of the feeding to discrete states.
- Learned from test experiment ²³⁸U(¹⁶O,¹⁶O*)²³⁸U.
- Production run ^{92,93,94}Mo(d,p) to study feeding.
- Analyze data from April 2009 experiment.
- Beam time lead time 2-3 months \rightarrow if necessary get more statistics.
- Lifetime measurement in inverse kinematics to get lifetime of quasi-continuum.
- We tried ⁹²Mo beam on deuteron implanted in ¹⁸¹Ta foil.
- It appears there were no deuterons in the Ta foil.
- Need a better D target allowing for lifetime measurement (chemical bond).
- Possibility to run a lifetime measurement experiment this fall.

Thank you!

L.A. Bernstein, D.L. Bleuel, S.R. Lesher, N.D. Scielzo, S. Sheets Lawrence Livermore National Laboratory, Livermore, CA 94550

M.S. Basunia, P. Fallon, S. Gros, R. Hatarik, P.T. Lake, I-Y Lee, A.O. Macchiavelli, M.A. McMahan, M. Petri, S. Paschalis, L. Phair *Lawrence Berkeley National Laboratory, Berkeley, CA 94720*

B.L. Goldblum

University of California, Department of Nuclear Engineering, Berkeley, CA 94720

M. Guttormsen, A.C. Larsen, H.T. Nyhus, S. Siem University of Oslo, 0371 Oslo, Norway

> A. Görgen CEA Saclay, 91191 Cedex, France

J.M. Allmond University of Richmond, Richmond, VA 23173