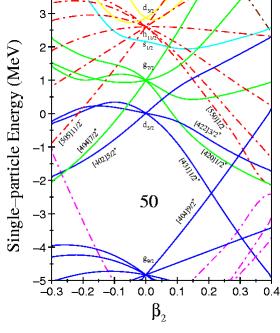


The Influence of Nuclear Structure on Statistical Decay Properties

Richard B. Firestone


Isotopes Project, Lawrence Berkeley National Laboratory

Berkeley, CA 94720

¹⁰⁶Pd Experimental Level Density

2nd Workshop on Level Density and Gamma Strength

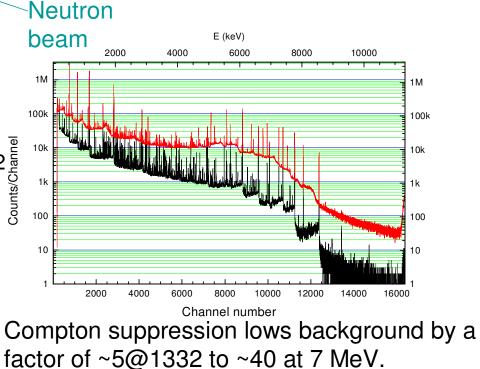
Introduction

New thermal neutron capture γ -ray cross section measurements (σ_{γ}) have been performed at the Budapest Reactor.

- Evaluated Gamma-ray Activation File (EGAF)
- Statistical model calculations with DICEBOX and COSMO to determine σ_0 and J^{π} values
- Search for nuclear structure (K) dependence.

Previous unpublished nuclear beta decay strength function measurements for ¹¹⁷⁻¹²⁴Cs will be discussed.

- LBNL Total Absorption Spectrometer
- Nuclear structure dependence of the beta decay strength


EGAF (n,γ) Database

Thermal beam $-2 \times 10^{6} \text{ n} \cdot \text{s}^{-1} \text{cm}^{-2}$ Cold beam $-5 \times 10^{7} \text{ n} \cdot \text{s}^{-1} \text{cm}^{-2}$

* Collaborators: G.L. Molnar[†], Zs. Revay, T. Belgya [†] Deceased

Thermal neutron γ-ray cross sections were measured for all elemental targets (Z=1,3-60,62-83, 92) at the Budapest Reactor*.

2nd Workshop on Level Density and Gamma Strength

Internal Calibration of (n,γ) data

- Stoichiometric compounds containing elements with wellknown cross sections
 - H, N, CI, S, Na, Ti, Au e.g. KCI, $(CH_2)_n$, Pb $(NO_3)_2$, Tl₂SO₄
- Homogenous mixtures

Aqueous (H₂O) or acid (20% HCl) solutions, mixed powders (TiO₂)

Cross section of activation products

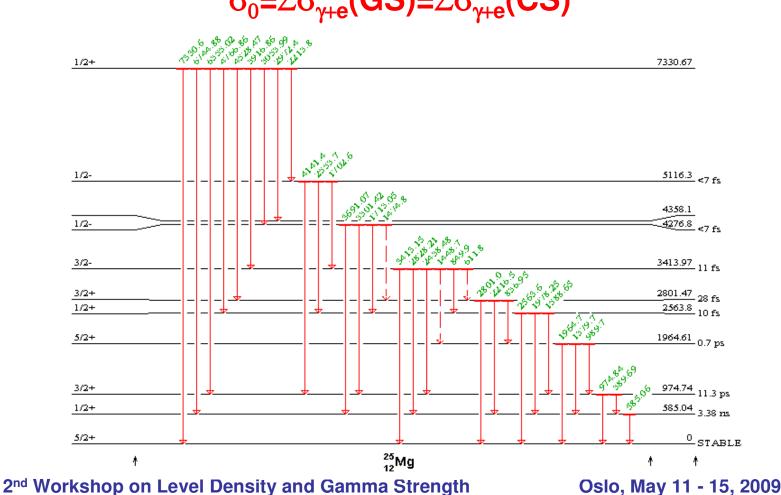
¹⁹F, ²⁸AI, ¹⁰⁰Tc, ²³⁵U

Cross section σ_{γ} precision of <1% for strong transitions. First reliable database of σ_{γ} from thermal neutron capture

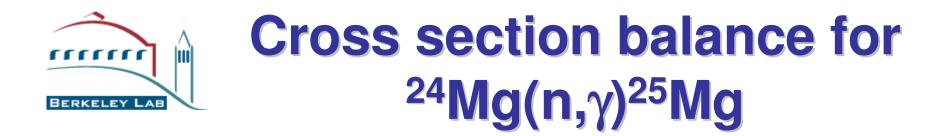
EGAF Database

The Evaluated Gamma-ray Activation File (**EGAF**) was compiled as an IAEA Coordinated Research Project . **EGAF** contains >13,000 γ -ray cross sections (σ_{γ}) from 79 elements.

EGAF thermal (n, γ) Publications:


Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, R.B. Firestone, H.D. Choi, R.M. Lindstrom, G.L. Molnar, S.F. Mughabghab, R. Paviotti-Corcuera, Zs. Revay, V. Zerkin, and C.M. Zhou, IAEA STI/PUB/1263, 251 pp (2007); on-line at http://www-pub.iaea.org/MTCD/publications/PubDetails.asp?publd=7030.

Handbook of Prompt Gamma Activation Analysis with Neutron Beams, Zs. Revay, T. Belgya, R.M. Lindstrom, Ch. Yonezawa, D.L. Anderson, Zs. Kasztovsky, and R.B. Firestone, edited by G.L. Molnar (Kluwer Publishers, 2004).


2nd Workshop on Level Density and Gamma Strength

Low-Z σ_0 **Cross Sections** lui BERKELEY LAB

The decay schemes of low-Z isotopes are complete. Total thermal radiative neutron cross sections are calculated by

 $σ_0 = Σ σ_{\gamma+e} (GS) = Σ σ_{\gamma+e} (CS)$

Cross section balance for the ²⁵Mg neutron capture decay scheme

E(Level)	σ(in)	σ(out)	Δσ
0	0.0536(14)	0.0	0
585.01(3)	0.0406(11)	0.0398(14)	0.0008(18)
974.68(3)	0.0157(4)	0.0158(4)	0.0001(6)
1964.69(10)	0.00022(2)	0.00026(3)	0.00004(4)
2563.35(4)	0.00202(10)	0.00179(7)	0.00023(12)
2801.54(9)	0.00047(4)	0.00061(5)	0.00013(6)
3413.35(3)	0.0411(14)	0.0416(11)	0.0005(18)
4276.33(4)	0.0105(4)	0.0107(3)	0.0002(5)
4358.2(5)	0.00009(2)	0.0	0.00009(2)
5116.37(15)	0.00038(4)	0.00027(3)	0.00011(5)
7330.53(4)	0.0	0.0539(14)	0.0539(14)
σ(Mughabghab[23])		0.0536(15) b	•
σ (Measured, average)		0.0538(14) b	

High-Z Cross Sections

For Z \geq 20 measured neutron capture γ -ray decay schemes are generally incomplete due to unresolved continuum γ -rays.

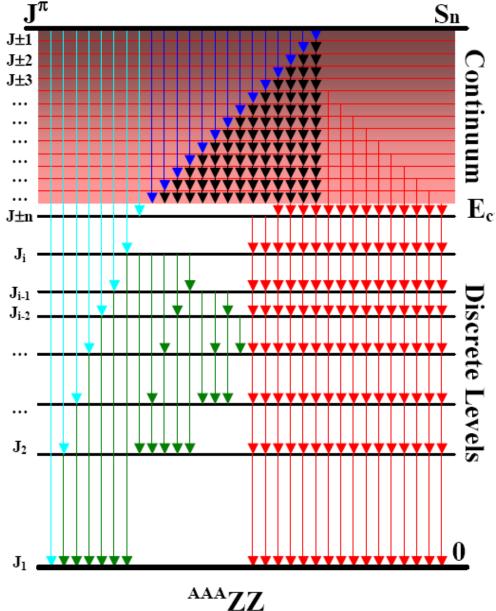
 σ_0 =21.0±1.5 b (Mughabghab) σ_γ (primary γ-rays)=0.55 b σ_γ (secondary γ-rays)=20.26 b

 105 Pd(n, γ) 106 Pd cross section level feedings calculated from EGAF data.

2nd Workshop on Level Density and Gamma Strength

$^{105}Pd(n,\gamma)^{106}Pd$ Level Feedings

	• /			•
E(level)	J ^π	Σσ _γ (in)	Σσ _γ (out)	ΔΣσ
0	0+	20.26	•	
511.844	2+	13.88	17.91	4.03
1128.04	2+	2.371	4.263	1.892
1133.79	0+	0.227	0.565	0.338
1229.2	4+	1.630	3.479	1.849
1557.67	3+	1.183	2.142	0.959
1562.16	2+	0.312	1.869	1.557
1706.44	0+	0.012	0.193	0.181
1909.39	2+	0.063	0.724	0.661
1932.37	4+	0.217	0.590	0.373
2001.56	0+	0.029	0.118	0.089
2077.1	6+	0.001	0.103	0.102
2077.37	(4)+	0.057	0.440	0.383
2084.39	-3	0.123	1.033	0.910
2242.4	2+	0.026	0.499	0.473
2278.47	0+	0	0.056	0.056
2282.89	4+	0.0007	0.275	0.274
2306.01	-3	0.053	0.542	0.489
2308.73	2+	0.000	0.283	0.283
2350.96	4+	0.018	0.304	0.286
2366.09	5+	0.003	0.116	0.114
2397.37	(5)-	0.055	0.263	0.209
2401	(2-,3-)	0.037	0.300	0.263
2439.11	2+	0.065	0.293	0.227
2472.09	0+	0.000	0.055	0.055
2484.76	(1-)	0.043	0.253	0.211
2500.01	-2	0.028	0.296	0.267
2578.64	(4-)	0.00004	0.221	0.221
9561.4	2+,3+		0.554	


Statistical Model Calculations

The (n,γ) continuum feeding is completely statistical and can be calculated if

.....

- 1. σ_{γ} deexciting levels below a cutoff energy E_{crit} is complete.
- 2. Primary σ_{γ} populating the levels below E_{crit} from the capture state is complete.
- 3. J^{π} of levels below E_{crit} are well known.
- 4. Level density above E_{crit} is statistically distributed.
- 5. Photon strength deexciting levels above E_{crit} is statistically distributed.

2nd Workshop on Level Density and Gamma Strength

- DICEBOX is Monte Carlo code written by F. Becvar and M. Krticka that generates complete simulated neutron capture decay schemes constrained by known nuclear properties and statistical models.
 - A. Discrete primary and secondary γ -ray data from EGAF
 - B. J^{π} data for E<E_{crit} from Reaction Input Parameter Library (RIPL)
 - C. Level density models
 - 1. Constant temperature (CT)

$$\rho(E,J) = \frac{f(J)}{T} \exp(\frac{E - E_0}{T})$$

- 2. Back-shifted Fermi (BSF) model $\rho(E, J) = f(J) \frac{\exp\left(2\sqrt{a(E-E_1)}\right)}{12\sqrt{2}\sigma_2 a^{1/4}(E-E_1)^{5/4}}$
- D. El Photon Strength
 - **1.** Brink-Axel (BA) $f_{BA}^{(E1)}(E_{\gamma}) = \frac{1}{3(\pi\hbar c)^2} \frac{\sigma_G E_{\gamma} \Gamma_G^2}{(E_{\gamma}^2 E_G^2)^2 + E_{\gamma}^2 \Gamma_G^2}$
 - 2. Kadmenski, Markushev, Furman (KMF) for spherical nuclei
 - 3. Kopecky et al generalized Laurentian (GLO), temperature dep.
- E. M1 Photon Strength
 - 1. Single Particle (SP), $f^{(E_1)}/f^{(M_1)}=5-7$ or $f(M_1)=1.2\times 10^{-8} MeV^{-3}$
 - 2. Spin-Flip (SF), Laurentzian resonance ≈8,5 MeV, GSF ≈ 4 MeV

COSMO Calculations

COSMO: (**CO**ntinuous **S**tatistical **MO**del) – by R.B. Firestone (LBNL, Berkeley)

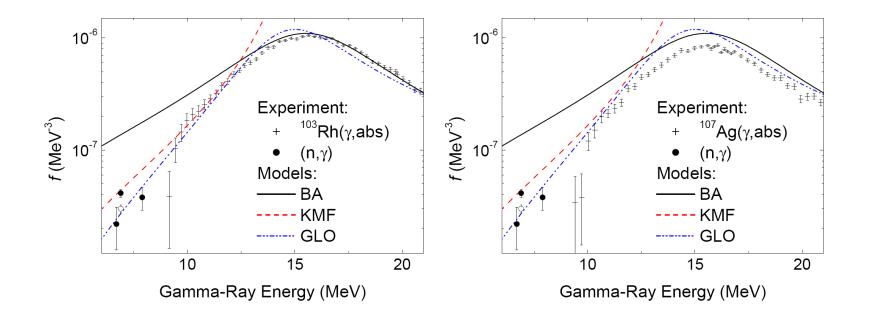
- Similar statistical model approach as DICEBOX
- The statistical decay scheme is binned above E_{crit}
- Average level densities and photon strengths are assumed for each bin.
- COSMO calculations run faster than DICEBOX on small PCs
- No information on the statistical variation in the calculation is provided

EGAF σ_{γ} data are available for (n,γ) on all stable palladium targets

102,104,105,106,108,110**Pd**

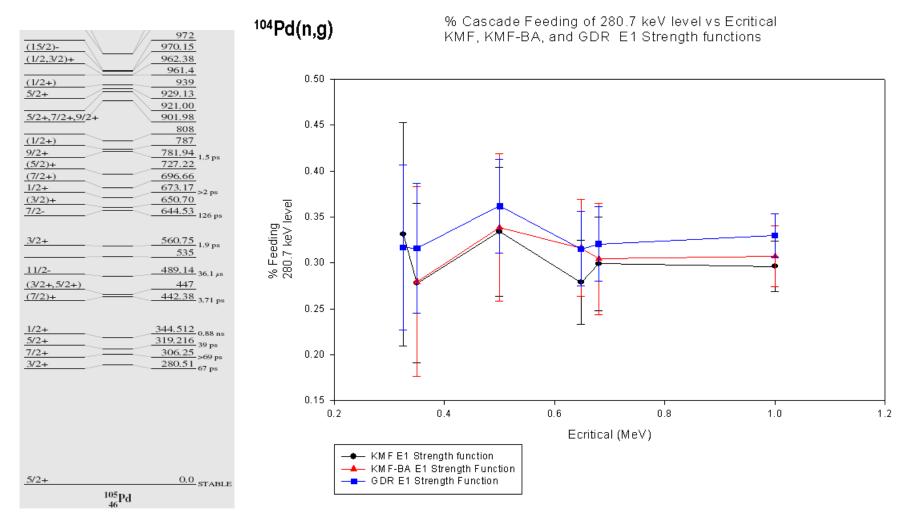
Calculations of the statistical σ_{γ} populating levels $< E_{crit}$ were performed with **DICEBOX** where input model and parameters were selected by

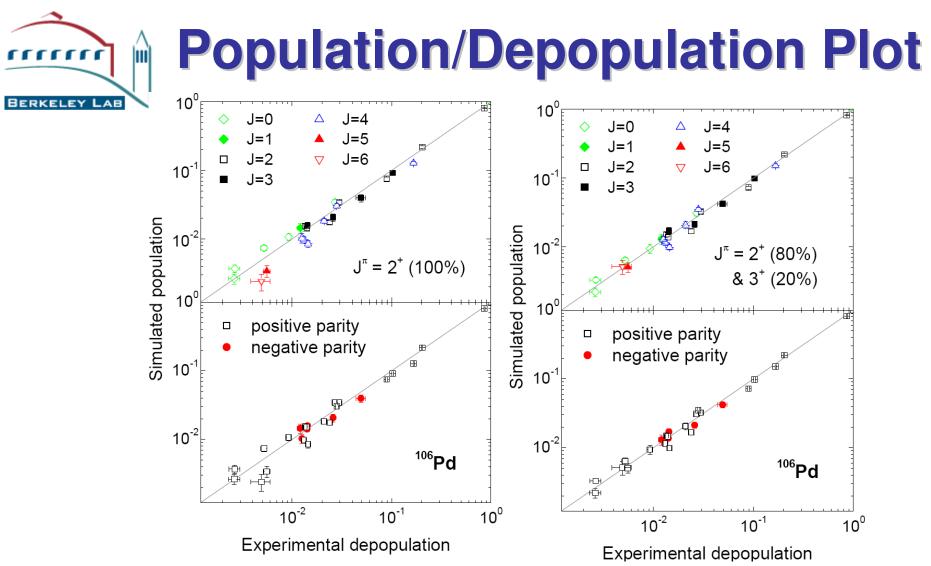
- Comparison of calculated and experimental capture state width
- Comparison of E1 photon strength with photonuclear data from neighboring nuclei
- Dependence on E_{crit} of the result
- Comparison of σ_{γ} populating/depopulate levels <E_{crit}


Model dependence of the ¹⁰⁶Pd capture state width

DICEBOX calculation of the capture state width

E1-PSF	M1-PSF	ρ(E,J)	$\Gamma_{\gamma}^{\ tot}$
Brink-Axel	Single Particle	Constant Temperature	410±47
Brink-Axel	Spin flip	Constant Temperature	352±42
Kadmenski et al (KMF)	Single Particle	Back-shifted Fermi	201±14
Kadmenski et al (KMF)	Spin flip	Back-shifted Fermi	172±12
Generalized Laurentzian	Single Particle	Back-shifted Fermi	156±8
Generalized Laurentzian	Spin flip	Back-shifted Fermi	126±8
	148±10		


E1 Photon Strength


Comparison of E1 photon strength models indicate that KMF and GLO models agree better with than Brink-Axel for ¹⁰³Rh and ¹⁰⁷Ag photonuclear data.

Dependence of the Statistical Feeding on E_{crit}

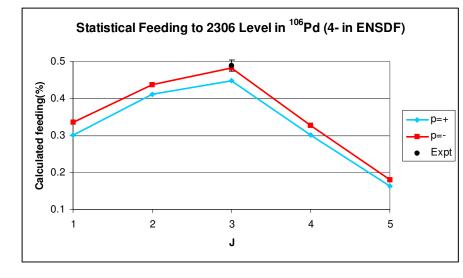
2nd Workshop on Level Density and Gamma Strength

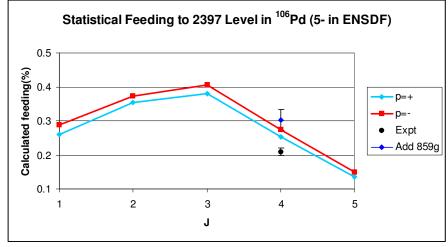
Spin composition of the capture state is determined by a least-squares fit.

 $\sigma_0 = \sigma_{\gamma}(GS)_{expt} + \sigma_{\gamma}(GS)_{Statistical} = 20.3 \pm 0.3 \text{ b} + 1.4 \pm 0.3 \text{ b} = 21.7 \pm 0.5 \text{ b}$ $\sigma_0(Mughabghab) = 21.0 \pm 1.5 \text{ b}$

2nd Workshop on Level Density and Gamma Strength

RIPL Structure Data Library

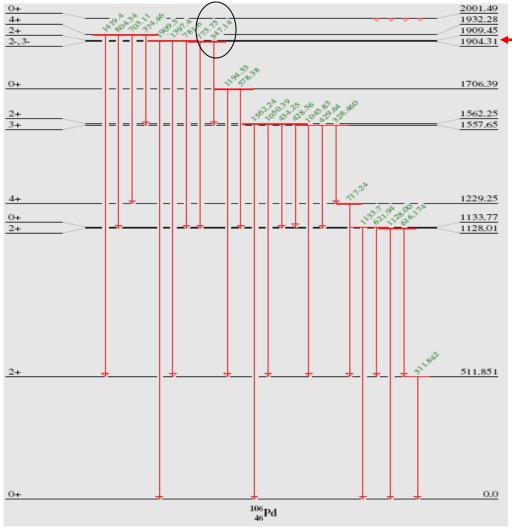

RIPL input data for ¹⁰⁶Pd


NL EL[MeV] S/P F T1/2[s] Ng s unc s-info nd m p mode Nf Eg[MeV] Pg Pe Icc 1 0.000000 0.0 1 -1.00E+00 0 u 0+ 0 2 0.511851 2.0 1 1.21E-11 1 u 2+ 0	
2 0.511651 2.0 I I.21E-II I U 2+ 0	
1 0.512 9.946E-01 1.000E+00 5.455E-03	
3 1.128010 2.0 1 3.12E-12 2 u 2+ 0	
2 0.616 6.461E-01 6.482E-01 3.252E-03	
1 1.128 3.515E-01 3.518E-01 7.525E-04	
4 1.133770 0.0 1 6.80E-12 2 u 0+ 0	
2 0.622 9.968E-01 1.000E+00 3.171E-03 1 1.134 0.000E+00 0.000E+00 0.000E+00	
5 1.229250 4.0 1 1.34E-12 1 u $4+ 0$	
2 0.717 9.978E-01 1.000E+00 2.183E-03	
(2,3)+) 0 E is limited to	\mathbf{a}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
34 2.624400 0.0 1 3 u 0+ 0 7 1.062 3.608E-01 3.611E-01 8.584E-the highest leve	'el
	-
2 2 113 3 $\frac{283\pi}{5}$ 01 3 883π -01 0 000 π + WILLI A ULIQUE,	
35 2.626870 -1.0 0 3 $(2,3)+0$ 7 1.065 7.453E-02 7.453E-02 0.000E+ known J ^{π}	
7 1.065 7.453E-02 7.453E-02 0.000E+KIIOWII J	
3 1.499 6.211E-01 6.211E-01 0.000E+00	
2 2.115 3.043E-01 3.043E-01 0.000E+00	

2nd Workshop on Level Density and Gamma Strength

RIPL Input Data Problems: J^π Errors

Statistical model calculations can be used to constrain J^{π} values.


2306-keV level feeding is consistent with $J^{\pi}=3^{-}$ not $J^{\pi}=4^{-}$ adopted in ENSDF on basis of $\gamma\gamma(\theta)$.

2397-keV level feeding is consistent with $J^{\pi}=4^{-}$ when additional γ -ray is placed. Assignment of $J^{\pi}=5^{-}$ in ENSDF is based on L=(5) in (p,t).

2nd Workshop on Level Density and Gamma Strength

Level Scheme Errors

-Mistaken level assignment

1904.3 keV level assigned by the Ritz principal.

 $\sigma_{\gamma}(1904)_{expt}=0.12 \text{ b}$ $\sigma_{\gamma}(1904)_{DICEBOX}=1.13 \text{ b}$

Reassigning placement of the 347and 776-keV γ -rays to deexcite the 1909.4-keV level gives

 $\sigma_{\gamma}(1909)_{expt}=0.62 \text{ b} \ \sigma_{\gamma}(1909)_{DICEBOX}=0.83 \text{ b}$

Statistical model calculations can be used to improve the nuclear structure information in RIPL.

¹⁰⁶Pd J^π Values

BERKELEY LAB	E	dE	JPI(ENSDF)	JPI(This work)	E	dE	JPI(ENSDF)	JPI(This work)
	0	0	0+	0+	2626.76	0.1	(2,3)+	(2,3)+
	511.844		2+	2+	2646.3	0.2	(4+)	(4+)
	1128.04		2+	2+	2699.36	0.16	(6)-	(6)-
New J^{π} values or level	1133.79	0.06	0+	0+	2705.3	0.08	(1)+	(1)+
	1229.2		4+	4+	2713.78	0.09	2+,3+	2+,3+
placements were	1557.67	0.04	3+	3+	2741	0.5	4+	1,2+
•	1562.16 1706.44	0.04 0.08	2+ 0+	2+ 0+	2747.72 2757	0.16 0.04	2-,3- 5+	2-,3-
determined for 7 of 64	1904.21	0.08	2-,3-	NO LEVEL	2757	0.04	5+ (4+)	5+ (4+)
levels.	1909.39	0.03	2-,3-	2+	2783.71	0.13	2+	2+
	1932.37	0.05	4+	4+	2820.94	0.11	2+	2+
	2001.56	0.11	0+	0+	2828	1.7	0+	0+
The cross section	2076.69	0.04	4+	4+	2861.41	0.17	(+)	(+)
de exceltine the 0170	2077.01	0.06	6+	6+	2850.79	0.15	2+,3+	2+,3+
deexciting the 2472	2084.39	0.07	3-	3-	2878.27	0.19	0+	0+
level is inconsistent	2229.2			NO LEVEL	2886.16	0.23	(-)	(-)
	2242.4		2+	2+	2897.42	0.16	(1-,4-)	4-
with J>0. Decay to 0+	2278.47	0.14	0+	0+	2902.31	0.2	2+	2+
•	2282.89	0.09	4+	4+	2908.53	0.17	(1-)	(1-)
levels rules out $J^{\pi}=0^{\pm}$.	2306.01	0.06	4-	3-	2918.56	0.13	2+	2+
Fither there is missing	2308.73	0.11	2+	2+	2935.8	0.2	(2-,3-)	(2-,3-)
Either there is missing	2350.96 2366.09	0.09 0.1	4+ 5+	4+ 5+	2968.5 3037.45	0.25 0.11	3- 1,2	3- 1,2
γ -ray deexcitation or	2300.09	0.08	(5)-	4-	3056.38	0.12	1,2	1+
	2400 84		2-,3-	2-,3-	3071.03	0.23	(2,3)-	(2,3)-
this level placement is	2439.11	0.1	2+	2+	3083.52	0.13	0	0+
	2472.09	0.17	1+,2+	1+,2+???	3118.45	0.18	(6+)	(6+)
incorrect.	2484.76	0.25	(1-)	(1-)	3161.1	0.5	2+	2+
	2500.01	0.12	2-	2-	3173.8	0.7	(2+,3+)	(2+,3+)
	2578.64	0.1	(5-)	(4-)	3221.64	0.15	0+	0+
	2591.2	0.4	(2,3)+	(2,3)+	3252	0.4	2+	2+
	2624.21	0.13	0+	0+	3319.52	0.25	0+	0+

2nd Workshop on Level Density and Gamma Strength

Oslo, May 11 - 15, 2009

Pd total radiative cross section σ_0 results

Reaction	# levels	σ_0 (literature)	σ_0 (this work)
E(n)=thermal	below E _{crit}	(barns)	(barns)
¹⁰² Pd(n,γ) ¹⁰³ Pd	2	1.6±0.2	1.1±0.4
¹⁰⁴ Pd(n,γ) ¹⁰⁵ Pd	5	0.65±0.30	0.77±0.17
¹⁰⁵ Pd(n,γ) ¹⁰⁶ Pd	28	21.0±1.5	21.7±0.5
¹⁰⁶ Pd(n,γ) ¹⁰⁷ Pd	5	0.30±0.03	0.36±0.10
¹⁰⁸ Pd(n,γ) ¹⁰⁹ Pd	11	7.6±0.5	7.2±0.5
¹⁰⁸ Pd(n,γ) ¹⁰⁹ Pd ^m	2	0.185±0.010	0.185±0.011
¹¹⁰ Pd(n,γ) ¹¹¹ Pd	5	0.70±0.17	0.34±0.10

Total radiative thermal neutron cross sections can be determined even when only one γ -ray is observed.

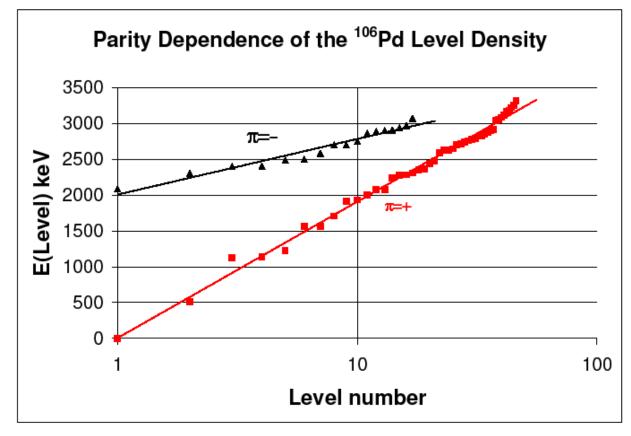
The spin distribution of the level density f(J) has be defined as (Bethe, 1937) $f(J) = \frac{2J+1}{2} \exp\left(-\frac{(J+1/2)^2}{2}\right)$

$$f(J) = \frac{2J+1}{2\sigma_c^2} \exp\left(-\frac{(J+1/2)^2}{2\sigma_c^2}\right)$$

Where σ_c^2 is the spin cutoff parameter. This should be multiplied by a parity distribution parameter f(π).

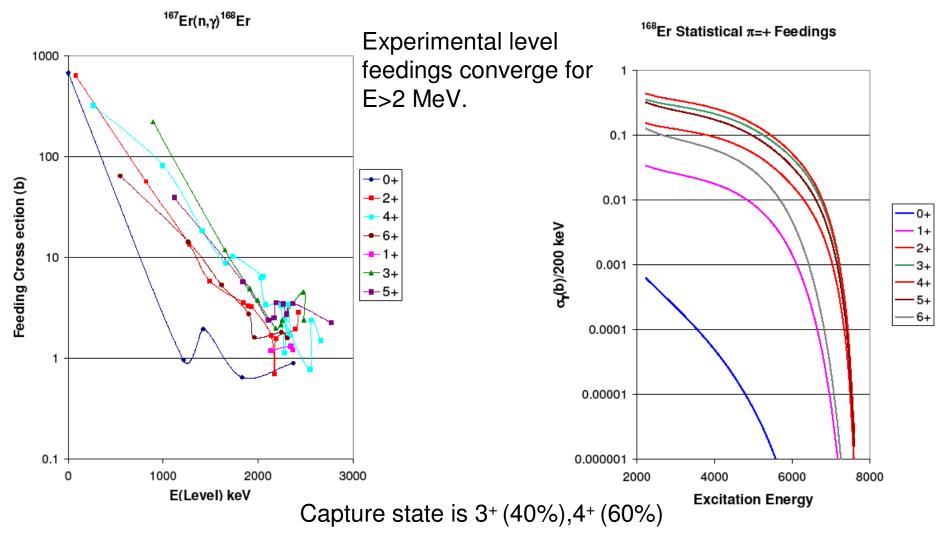
One parameterization of $f(\pi)$ is suggested by Al-Quraishi [1] and used in COSMO calculations is

$$f(\pi = +) = 0.5 \times [1 + (1 + \exp(C_{\pi}(E - \Delta_{\pi}))^{-1}]$$
$$f(\pi = -) = 1 - F(\pi = +)$$


where C_{π} , Δ_{π} are given by the authors.

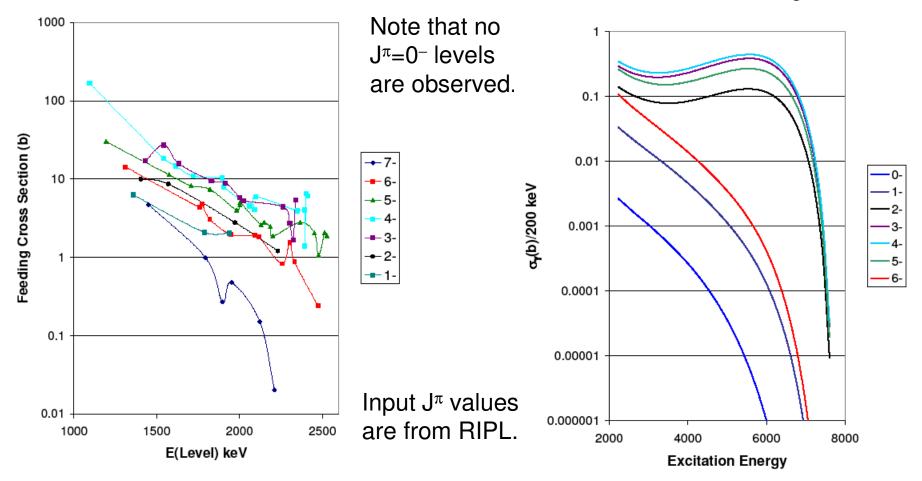
[1] S.I. Al-Quraishi, S.M. Grimes, T.N. Massey, and D.A. Resler, Phys. Rev. C67, 015803.

2nd Workshop on Level Density and Gamma Strength


Parity Dependence of the Experimental Level Density

Positive and negative parities may have different temperatures

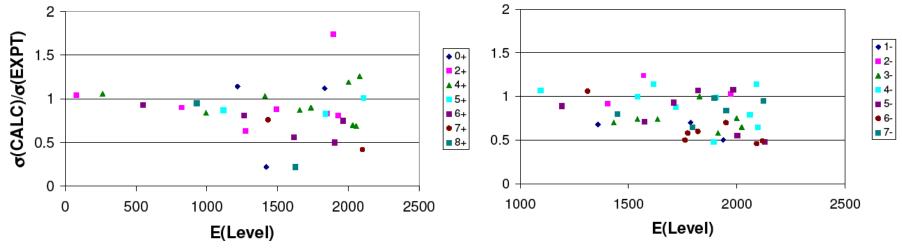
Experimental and Statistical J^{*π***=+} Feedings**


2nd Workshop on Level Density and Gamma Strength

Experimental and Statistical J^{π=-} Feedings

¹⁶⁷Er(n,γ)¹⁶⁸Er

¹⁶⁸Er Statistical π=- Feedings



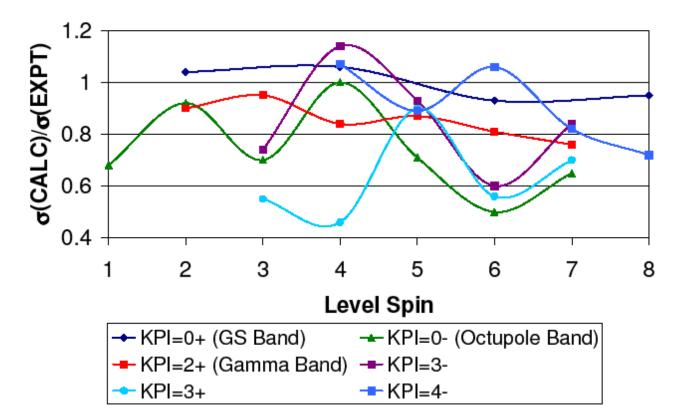
2nd Workshop on Level Density and Gamma Strength

Comparison of ¹⁶⁸Er Experimental and Statistical Cross Sections

¹⁶⁸Er: Comparison of Experimental and Calculated Level Feedings π=+ ¹⁶⁸Er: Comparison of Experimental and Calculated Level Feedings π =–

Level densities - CT model, E1 dipole strength Brink-Axel. E_{crit} =2135 keV (80 levels) For E<1300 keV, σ (CALC)/ σ (EXPT)=0.96.

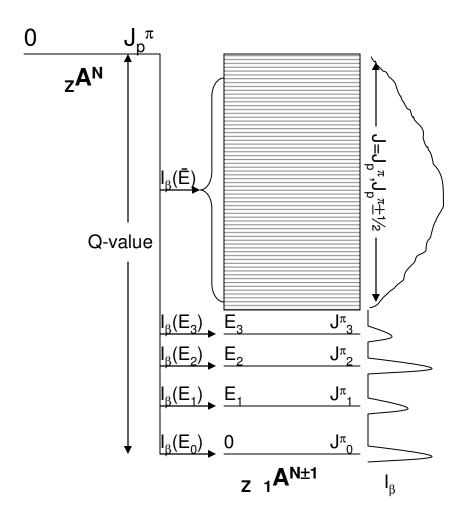
For E>1300 keV, σ (CALC)/ σ (EXPT)= 0.80


- Incomplete experimental level scheme
- Nuclear structure contributions

Outliers may be due to low statistics, missing transitions, and incorrect J^{π} assignments.

K-Dependence

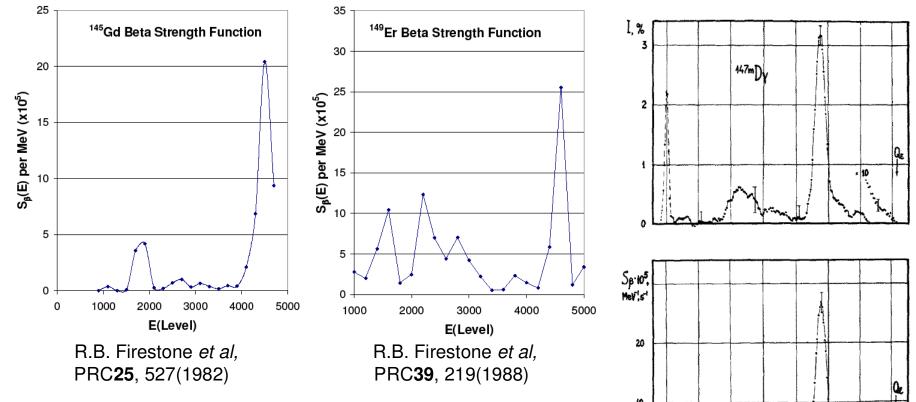
¹⁶⁸Er K-Dependence of the Statistical Model



Significant dependence on K is observed. Note that oscillations in the fit appear to be correlated, possibly due to incorrect spin distribution.

2nd Workshop on Level Density and Gamma Strength

β-Strength Function


$$S_{\beta}(E) = \frac{I_{\beta}(E)}{f(Q_{\beta} - E)t_{1/2}} \text{ (individual levels)}$$
$$S_{\beta}(E) = \frac{\rho(E)}{f(Q_{\beta} - E)t_{Ave}} \text{ (continuum levels)}$$

In the continuum $S_{\beta}(E)$ is calculated from the product of the level density $\rho(E)$ and an average beta strength ft_{Ave} analogous to the statistical model for thermal neutron capture γ -ray decay analysis.

2nd Workshop on Level Density and Gamma Strength

Nuclear Structure in the β-Strength Function

It was shown in detailed decay scheme studies and Total Absorption Spectrometer (TAS) measurements that the beta strength to the continuum in ¹⁴⁵Gd, ¹⁴⁷Dy, and ¹⁴⁹Er is not statistical.

Oslo, May 11 - 15, 2009

Alkhasov et al, NP A438,

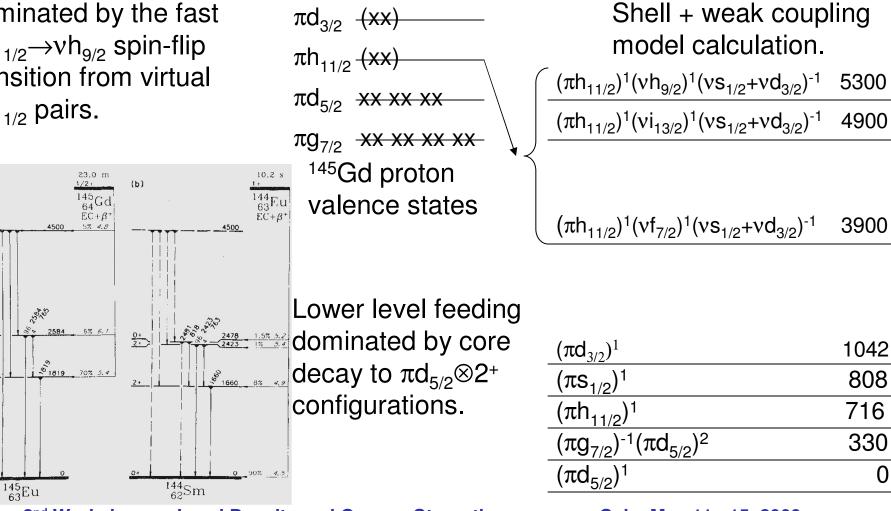
2

482(1985)

-4

6

FNeV



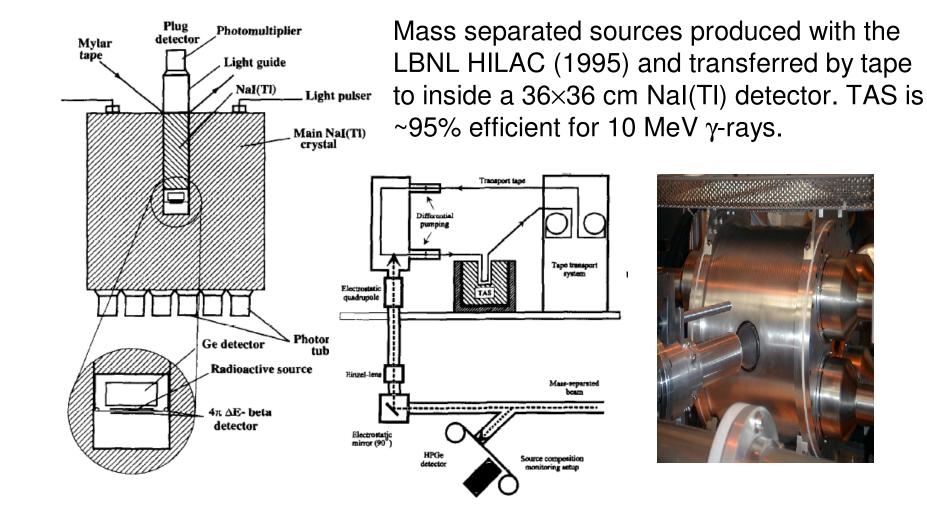
(a)

5/2+

Nuclear Structure and the **Decay of N=81 Isotopes**

The β -strength function is dominated by the fast $\pi h_{11/2} \rightarrow \nu h_{9/2}$ spin-flip transition from virtual $\pi h_{11/2}$ pairs.

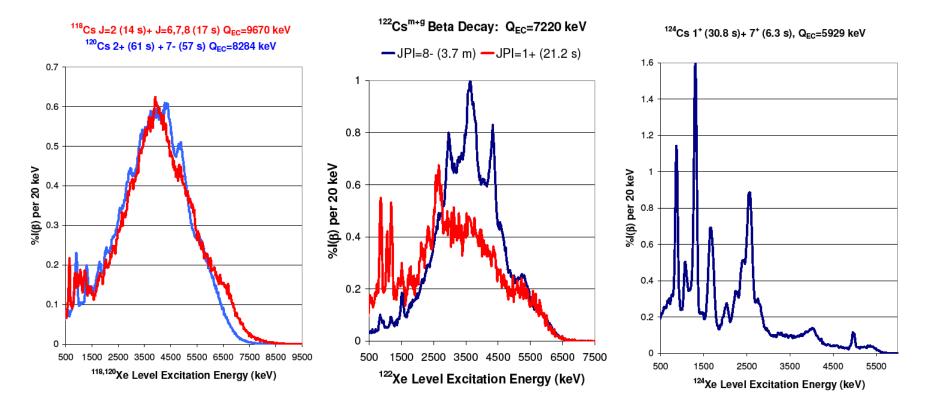
 $\pi S_{1/2}$ (XX)


2nd Workshop on Level Density and Gamma Strength

Oslo, May 11 - 15, 2009

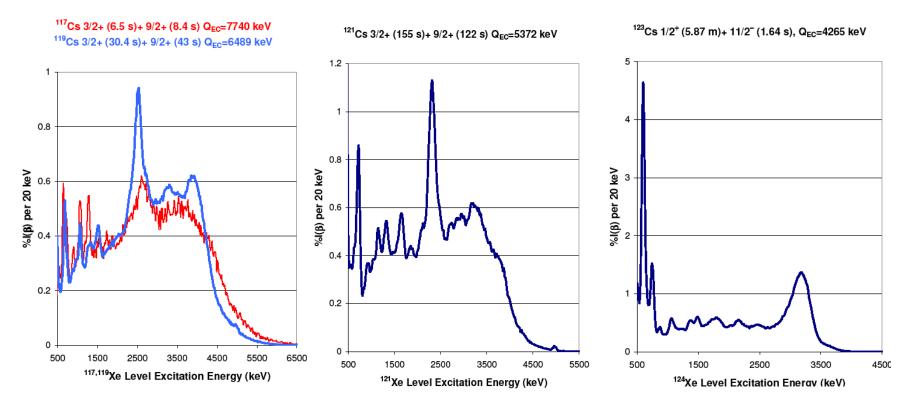
0

LBNL Total Absorption Spectrometer (TAS)



2nd Workshop on Level Density and Gamma Strength

¹¹⁸⁻¹²⁴Cs Odd-Odd Isotopes



- ¹¹⁸Cs and ¹²⁰Cs decays have nearly the same β -strengths with little structure
- Onset of high excitation nuclear structure appears at ¹²²Cs with N=65
- Isomeric and GS decays can have very different nuclear structure features

2nd Workshop on Level Density and Gamma Strength

¹¹⁷⁻¹²³Cs Odd-Even Isotopes

- Little nuclear structure >3 MeV is seen in ¹¹⁷Cs Decay
- Comparable β -strengths with resonances >3 MeV are seen in ¹¹⁹⁻¹²³Cs decays
- Transition to high excitation resonance structure appears to occur at N=64.

2nd Workshop on Level Density and Gamma Strength

Strong β -strength is expected for $\pi g_{9/2} \rightarrow \nu g_{7/2}$ spin-flip transition.

The Cs isotopes have $\beta_2=0.2-0.3$ bringing the $\pi g_{9/2+}[404]$ configuration near the GS. A fast spin-flip β decay transition is expected to the $\nu g_{7/2+}[404]$ configuration at ~4 MeV.

Disappearance of the high excitation structure in the β -strength for N<64 has not been explained.

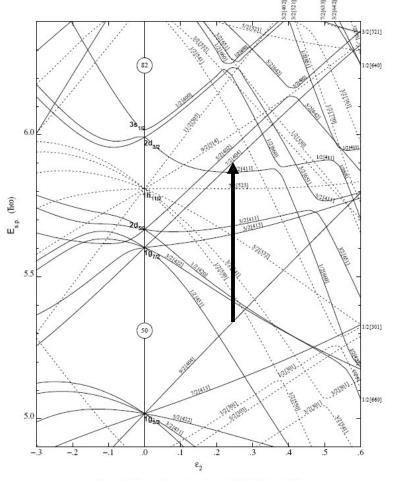


Figure 12. Nilsson diagram for protons, $50 \le Z \le 82$ ($\epsilon_4 = -\epsilon_2^2/6$)

Conclusions

• Statistical model analysis of thermal neutron capture σ_{γ} data can be used to accurately determine total radiative cross sections σ_0 and improve level J^{π} values.

• Preliminary evidence of nuclear structure effects, possible K dependence, are seen in the neutron capture data.

• Strong evidence of nuclear structure effects is seen in the β -strength function for the decay of nuclei far from stability.